
ffserver Documentation

Table of Contents

1 Synopsis

2 Description

3 Detailed description

3.1 FFM, FFM2 formats

3.2 Status stream

3.3 How do I make it work?

3.4 What else can it do?

3.5 Tips

3.6 Why does the ?buffer / Preroll stop working after a time?

3.7 Does the ?date= stuff work.

4 Options

4.1 Stream specifiers

4.2 Generic options

4.3 AVOptions

4.4 Main options

5 Configuration file syntax

5.1 ACL syntax

5.2 Global options

5.3 Feed section

5.4 Stream section

5.4.1 Server status stream

5.5 Redirect section

6 Stream examples

7 See Also

8 Authors

1 Synopsis# TOC

ffserver [options]

2 Description# TOC

ffserver is a streaming server for both audio and video. It supports several live feeds, streaming from

files and time shifting on live feeds. You can seek to positions in the past on each live feed, provided you

specify a big enough feed storage.

ffserver is configured through a configuration file, which is read at startup. If not explicitly specified,

it will read from /etc/ffserver.conf.

ffserver receives prerecorded files or FFM streams from some ffmpeg instance as input, then streams

them over RTP/RTSP/HTTP.

An ffserver instance will listen on some port as specified in the configuration file. You can launch one

or more instances of ffmpeg and send one or more FFM streams to the port where ffserver is expecting

to receive them. Alternately, you can make ffserver launch such ffmpeg instances at startup.

Input streams are called feeds, and each one is specified by a <Feed> section in the configuration file.

For each feed you can have different output streams in various formats, each one specified by a

<Stream> section in the configuration file.

3 Detailed description# TOC

ffserver works by forwarding streams encoded by ffmpeg, or pre-recorded streams which are read

from disk.

Precisely, ffserver acts as an HTTP server, accepting POST requests from ffmpeg to acquire the

stream to publish, and serving RTSP clients or HTTP clients GET requests with the stream media content.

A feed is an FFM stream created by ffmpeg, and sent to a port where ffserver is listening.

Each feed is identified by a unique name, corresponding to the name of the resource published on

ffserver, and is configured by a dedicated Feed section in the configuration file.

The feed publish URL is given by:

http://ffserver_ip_address:http_port/feed_name

where ffserver_ip_address is the IP address of the machine where ffserver is installed, http_port is the

port number of the HTTP server (configured through the HTTPPort option), and feed_name is the name

of the corresponding feed defined in the configuration file.

Each feed is associated to a file which is stored on disk. This stored file is used to send pre-recorded data

to a player as fast as possible when new content is added in real-time to the stream.

A "live-stream" or "stream" is a resource published by ffserver, and made accessible through the

HTTP protocol to clients.

A stream can be connected to a feed, or to a file. In the first case, the published stream is forwarded from

the corresponding feed generated by a running instance of ffmpeg, in the second case the stream is read

from a pre-recorded file.

Each stream is identified by a unique name, corresponding to the name of the resource served by

ffserver, and is configured by a dedicated Stream section in the configuration file.

The stream access HTTP URL is given by:

http://ffserver_ip_address:http_port/stream_name[options]

The stream access RTSP URL is given by:

http://ffserver_ip_address:rtsp_port/stream_name[options]

stream_name is the name of the corresponding stream defined in the configuration file. options is a list of

options specified after the URL which affects how the stream is served by ffserver. http_port and

rtsp_port are the HTTP and RTSP ports configured with the options HTTPPort and RTSPPort

respectively.

In case the stream is associated to a feed, the encoding parameters must be configured in the stream

configuration. They are sent to ffmpeg when setting up the encoding. This allows ffserver to define

the encoding parameters used by the ffmpeg encoders.

The ffmpeg override_ffserver commandline option allows one to override the encoding

parameters set by the server.

Multiple streams can be connected to the same feed.

For example, you can have a situation described by the following graph:

 _________ __________
 | | | |
ffmpeg 1 -----| feed 1 |-----| stream 1 |
 \ |_________|\ |__________|
 \ \
 \ \ __________
 \ \ | |
 \ \| stream 2 |
 \ |__________|
 \
 \ _________ __________
 \ | | | |
 \| feed 2 |-----| stream 3 |
 |_________| |__________|

 _________ __________
 | | | |
ffmpeg 2 -----| feed 3 |-----| stream 4 |
 |_________| |__________|

 _________ __________
 | | | |
 | file 1 |-----| stream 5 |
 |_________| |__________|

3.1 FFM, FFM2 formats# TOC

FFM and FFM2 are formats used by ffserver. They allow storing a wide variety of video and audio

streams and encoding options, and can store a moving time segment of an infinite movie or a whole

movie.

FFM is version specific, and there is limited compatibility of FFM files generated by one version of

ffmpeg/ffserver and another version of ffmpeg/ffserver. It may work but it is not guaranteed to work.

FFM2 is extensible while maintaining compatibility and should work between differing versions of tools.

FFM2 is the default.

3.2 Status stream# TOC

ffserver supports an HTTP interface which exposes the current status of the server.

Simply point your browser to the address of the special status stream specified in the configuration file.

For example if you have:

<Stream status.html>
Format status

Only allow local people to get the status
ACL allow localhost
ACL allow 192.168.0.0 192.168.255.255
</Stream>

then the server will post a page with the status information when the special stream status.html is

requested.

3.3 How do I make it work?# TOC

As a simple test, just run the following two command lines where INPUTFILE is some file which you can

decode with ffmpeg:

ffserver -f doc/ffserver.conf &
ffmpeg -i INPUTFILE http://localhost:8090/feed1.ffm

At this point you should be able to go to your Windows machine and fire up Windows Media Player

(WMP). Go to Open URL and enter

 http://<linuxbox>:8090/test.asf

You should (after a short delay) see video and hear audio.

WARNING: trying to stream test1.mpg doesn’t work with WMP as it tries to transfer the entire file before

starting to play. The same is true of AVI files.

You should edit the ffserver.conf file to suit your needs (in terms of frame rates etc). Then install

ffserver and ffmpeg, write a script to start them up, and off you go.

3.4 What else can it do?# TOC

You can replay video from .ffm files that was recorded earlier. However, there are a number of caveats,

including the fact that the ffserver parameters must match the original parameters used to record the file. If

they do not, then ffserver deletes the file before recording into it. (Now that I write this, it seems broken).

You can fiddle with many of the codec choices and encoding parameters, and there are a bunch more

parameters that you cannot control. Post a message to the mailing list if there are some ’must have’

parameters. Look in ffserver.conf for a list of the currently available controls.

It will automatically generate the ASX or RAM files that are often used in browsers. These files are

actually redirections to the underlying ASF or RM file. The reason for this is that the browser often fetches

the entire file before starting up the external viewer. The redirection files are very small and can be

transferred quickly. [The stream itself is often ’infinite’ and thus the browser tries to download it and

never finishes.]

3.5 Tips# TOC

* When you connect to a live stream, most players (WMP, RA, etc) want to buffer a certain number of

seconds of material so that they can display the signal continuously. However, ffserver (by default) starts

sending data in realtime. This means that there is a pause of a few seconds while the buffering is being

done by the player. The good news is that this can be cured by adding a ’?buffer=5’ to the end of the URL.

This means that the stream should start 5 seconds in the past – and so the first 5 seconds of the stream are

sent as fast as the network will allow. It will then slow down to real time. This noticeably improves the

startup experience.

You can also add a ’Preroll 15’ statement into the ffserver.conf that will add the 15 second prebuffering on

all requests that do not otherwise specify a time. In addition, ffserver will skip frames until a key_frame is

found. This further reduces the startup delay by not transferring data that will be discarded.

3.6 Why does the ?buffer / Preroll stop working after a time?# TOC

It turns out that (on my machine at least) the number of frames successfully grabbed is marginally less

than the number that ought to be grabbed. This means that the timestamp in the encoded data stream gets

behind realtime. This means that if you say ’Preroll 10’, then when the stream gets 10 or more seconds

behind, there is no Preroll left.

Fixing this requires a change in the internals of how timestamps are handled.

3.7 Does the ?date= stuff work.# TOC

Yes (subject to the limitation outlined above). Also note that whenever you start ffserver, it deletes the ffm

file (if any parameters have changed), thus wiping out what you had recorded before.

The format of the ?date=xxxxxx is fairly flexible. You should use one of the following formats (the

’T’ is literal):

* YYYY-MM-DDTHH:MM:SS (localtime)
* YYYY-MM-DDTHH:MM:SSZ (UTC)

You can omit the YYYY-MM-DD, and then it refers to the current day. However note that

‘?date=16:00:00’ refers to 16:00 on the current day – this may be in the future and so is unlikely to

be useful.

You use this by adding the ?date= to the end of the URL for the stream. For example:

‘http://localhost:8080/test.asf?date=2002-07-26T23:05:00’.

4 Options# TOC

All the numerical options, if not specified otherwise, accept a string representing a number as input, which

may be followed by one of the SI unit prefixes, for example: ’K’, ’M’, or ’G’.

If ’i’ is appended to the SI unit prefix, the complete prefix will be interpreted as a unit prefix for binary

multiples, which are based on powers of 1024 instead of powers of 1000. Appending ’B’ to the SI unit

prefix multiplies the value by 8. This allows using, for example: ’KB’, ’MiB’, ’G’ and ’B’ as number

suffixes.

Options which do not take arguments are boolean options, and set the corresponding value to true. They

can be set to false by prefixing the option name with "no". For example using "-nofoo" will set the boolean

option with name "foo" to false.

4.1 Stream specifiers# TOC

Some options are applied per-stream, e.g. bitrate or codec. Stream specifiers are used to precisely specify

which stream(s) a given option belongs to.

A stream specifier is a string generally appended to the option name and separated from it by a colon. E.g.

-codec:a:1 ac3 contains the a:1 stream specifier, which matches the second audio stream.

Therefore, it would select the ac3 codec for the second audio stream.

A stream specifier can match several streams, so that the option is applied to all of them. E.g. the stream

specifier in -b:a 128k matches all audio streams.

An empty stream specifier matches all streams. For example, -codec copy or -codec: copy would

copy all the streams without reencoding.

Possible forms of stream specifiers are:

stream_index

Matches the stream with this index. E.g. -threads:1 4 would set the thread count for the second

stream to 4.

stream_type[:stream_index]

stream_type is one of following: ’v’ or ’V’ for video, ’a’ for audio, ’s’ for subtitle, ’d’ for data, and

’t’ for attachments. ’v’ matches all video streams, ’V’ only matches video streams which are not

attached pictures, video thumbnails or cover arts. If stream_index is given, then it matches stream

number stream_index of this type. Otherwise, it matches all streams of this type.

p:program_id[:stream_index]

If stream_index is given, then it matches the stream with number stream_index in the program with

the id program_id. Otherwise, it matches all streams in the program.

#stream_id or i:stream_id

Match the stream by stream id (e.g. PID in MPEG-TS container).

m:key[:value]

Matches streams with the metadata tag key having the specified value. If value is not given, matches

streams that contain the given tag with any value.

u

Matches streams with usable configuration, the codec must be defined and the essential information

such as video dimension or audio sample rate must be present.

Note that in ffmpeg, matching by metadata will only work properly for input files.

4.2 Generic options# TOC

These options are shared amongst the ff* tools.

-L

Show license.

-h, -?, -help, --help [arg]

Show help. An optional parameter may be specified to print help about a specific item. If no

argument is specified, only basic (non advanced) tool options are shown.

Possible values of arg are:

long

Print advanced tool options in addition to the basic tool options.

full

Print complete list of options, including shared and private options for encoders, decoders,

demuxers, muxers, filters, etc.

decoder=decoder_name

Print detailed information about the decoder named decoder_name. Use the -decoders option

to get a list of all decoders.

encoder=encoder_name

Print detailed information about the encoder named encoder_name. Use the -encoders option

to get a list of all encoders.

demuxer=demuxer_name

Print detailed information about the demuxer named demuxer_name. Use the -formats option

to get a list of all demuxers and muxers.

muxer=muxer_name

Print detailed information about the muxer named muxer_name. Use the -formats option to

get a list of all muxers and demuxers.

filter=filter_name

Print detailed information about the filter name filter_name. Use the -filters option to get a

list of all filters.

-version

Show version.

-formats

Show available formats (including devices).

-demuxers

Show available demuxers.

-muxers

Show available muxers.

-devices

Show available devices.

-codecs

Show all codecs known to libavcodec.

Note that the term ’codec’ is used throughout this documentation as a shortcut for what is more

correctly called a media bitstream format.

-decoders

Show available decoders.

-encoders

Show all available encoders.

-bsfs

Show available bitstream filters.

-protocols

Show available protocols.

-filters

Show available libavfilter filters.

-pix_fmts

Show available pixel formats.

-sample_fmts

Show available sample formats.

-layouts

Show channel names and standard channel layouts.

-colors

Show recognized color names.

-sources device[,opt1=val1[,opt2=val2]...]

Show autodetected sources of the input device. Some devices may provide system-dependent source

names that cannot be autodetected. The returned list cannot be assumed to be always complete.

ffmpeg -sources pulse,server=192.168.0.4

-sinks device[,opt1=val1[,opt2=val2]...]

Show autodetected sinks of the output device. Some devices may provide system-dependent sink

names that cannot be autodetected. The returned list cannot be assumed to be always complete.

ffmpeg -sinks pulse,server=192.168.0.4

-loglevel [repeat+]loglevel | -v [repeat+]loglevel

Set the logging level used by the library. Adding "repeat+" indicates that repeated log output should

not be compressed to the first line and the "Last message repeated n times" line will be omitted.

"repeat" can also be used alone. If "repeat" is used alone, and with no prior loglevel set, the default

loglevel will be used. If multiple loglevel parameters are given, using ’repeat’ will not change the

loglevel. loglevel is a string or a number containing one of the following values:

‘quiet, -8’

Show nothing at all; be silent.

‘panic, 0’

Only show fatal errors which could lead the process to crash, such as an assertion failure. This is

not currently used for anything.

‘fatal, 8’

Only show fatal errors. These are errors after which the process absolutely cannot continue.

‘error, 16’

Show all errors, including ones which can be recovered from.

‘warning, 24’

Show all warnings and errors. Any message related to possibly incorrect or unexpected events

will be shown.

‘info, 32’

Show informative messages during processing. This is in addition to warnings and errors. This is

the default value.

‘verbose, 40’

Same as info, except more verbose.

‘debug, 48’

Show everything, including debugging information.

‘trace, 56’

By default the program logs to stderr. If coloring is supported by the terminal, colors are used to mark

errors and warnings. Log coloring can be disabled setting the environment variable

AV_LOG_FORCE_NOCOLOR or NO_COLOR, or can be forced setting the environment variable

AV_LOG_FORCE_COLOR. The use of the environment variable NO_COLOR is deprecated and will

be dropped in a future FFmpeg version.

-report

Dump full command line and console output to a file named program-YYYYMMDD-HHMMSS.log
in the current directory. This file can be useful for bug reports. It also implies -loglevel
verbose.

Setting the environment variable FFREPORT to any value has the same effect. If the value is a

’:’-separated key=value sequence, these options will affect the report; option values must be escaped

if they contain special characters or the options delimiter ’:’ (see the “Quoting and escaping” section

in the ffmpeg-utils manual).

The following options are recognized:

file

set the file name to use for the report; %p is expanded to the name of the program, %t is

expanded to a timestamp, %% is expanded to a plain %

level

set the log verbosity level using a numerical value (see -loglevel).

For example, to output a report to a file named ffreport.log using a log level of 32 (alias for

log level info):

FFREPORT=file=ffreport.log:level=32 ffmpeg -i input output

Errors in parsing the environment variable are not fatal, and will not appear in the report.

-hide_banner

Suppress printing banner.

All FFmpeg tools will normally show a copyright notice, build options and library versions. This

option can be used to suppress printing this information.

-cpuflags flags (global)

Allows setting and clearing cpu flags. This option is intended for testing. Do not use it unless you

know what you’re doing.

ffmpeg -cpuflags -sse+mmx ...
ffmpeg -cpuflags mmx ...
ffmpeg -cpuflags 0 ...

Possible flags for this option are:

‘x86’

‘mmx’

‘mmxext’

‘sse’

‘sse2’

‘sse2slow’

‘sse3’

‘sse3slow’

‘ssse3’

‘atom’

‘sse4.1’

‘sse4.2’

‘avx’

‘avx2’

‘xop’

‘fma3’

‘fma4’

‘3dnow’

‘3dnowext’

‘bmi1’

‘bmi2’

‘cmov’

‘ARM’

‘armv5te’

‘armv6’

‘armv6t2’

‘vfp’

‘vfpv3’

‘neon’

‘setend’

‘AArch64’

‘armv8’

‘vfp’

‘neon’

‘PowerPC’

‘altivec’

‘Specific Processors’

‘pentium2’

‘pentium3’

‘pentium4’

‘k6’

‘k62’

‘athlon’

‘athlonxp’

‘k8’

4.3 AVOptions# TOC

These options are provided directly by the libavformat, libavdevice and libavcodec libraries. To see the list

of available AVOptions, use the -help option. They are separated into two categories:

generic

These options can be set for any container, codec or device. Generic options are listed under

AVFormatContext options for containers/devices and under AVCodecContext options for codecs.

private

These options are specific to the given container, device or codec. Private options are listed under

their corresponding containers/devices/codecs.

For example to write an ID3v2.3 header instead of a default ID3v2.4 to an MP3 file, use the

id3v2_version private option of the MP3 muxer:

ffmpeg -i input.flac -id3v2_version 3 out.mp3

All codec AVOptions are per-stream, and thus a stream specifier should be attached to them.

Note: the -nooption syntax cannot be used for boolean AVOptions, use -option 0/-option 1.

Note: the old undocumented way of specifying per-stream AVOptions by prepending v/a/s to the options

name is now obsolete and will be removed soon.

4.4 Main options# TOC

-f configfile

Read configuration file configfile. If not specified it will read by default from

/etc/ffserver.conf.

-n

Enable no-launch mode. This option disables all the Launch directives within the various <Feed>
sections. Since ffserver will not launch any ffmpeg instances, you will have to launch them

manually.

-d

Enable debug mode. This option increases log verbosity, and directs log messages to stdout. When

specified, the CustomLog option is ignored.

5 Configuration file syntax# TOC

ffserver reads a configuration file containing global options and settings for each stream and feed.

The configuration file consists of global options and dedicated sections, which must be introduced by

"<SECTION_NAME ARGS>" on a separate line and must be terminated by a line in the form

"</SECTION_NAME>". ARGS is optional.

Currently the following sections are recognized: ‘Feed’, ‘Stream’, ‘Redirect’.

A line starting with # is ignored and treated as a comment.

Name of options and sections are case-insensitive.

5.1 ACL syntax# TOC

An ACL (Access Control List) specifies the address which are allowed to access a given stream, or to

write a given feed.

It accepts the following forms

Allow/deny access to address.

ACL ALLOW <address>
ACL DENY <address>

Allow/deny access to ranges of addresses from first_address to last_address.

ACL ALLOW <first_address> <last_address>
ACL DENY <first_address> <last_address>

You can repeat the ACL allow/deny as often as you like. It is on a per stream basis. The first match

defines the action. If there are no matches, then the default is the inverse of the last ACL statement.

Thus ’ACL allow localhost’ only allows access from localhost. ’ACL deny 1.0.0.0 1.255.255.255’ would

deny the whole of network 1 and allow everybody else.

5.2 Global options# TOC

HTTPPort port_number

Port port_number

RTSPPort port_number

HTTPPort sets the HTTP server listening TCP port number, RTSPPort sets the RTSP server listening

TCP port number.

Port is the equivalent of HTTPPort and is deprecated.

You must select a different port from your standard HTTP web server if it is running on the same

computer.

If not specified, no corresponding server will be created.

HTTPBindAddress ip_address

BindAddress ip_address

RTSPBindAddress ip_address

Set address on which the HTTP/RTSP server is bound. Only useful if you have several network

interfaces.

BindAddress is the equivalent of HTTPBindAddress and is deprecated.

MaxHTTPConnections n

Set number of simultaneous HTTP connections that can be handled. It has to be defined before the

MaxClients parameter, since it defines the MaxClients maximum limit.

Default value is 2000.

MaxClients n

Set number of simultaneous requests that can be handled. Since ffserver is very fast, it is more

likely that you will want to leave this high and use MaxBandwidth.

Default value is 5.

MaxBandwidth kbps

Set the maximum amount of kbit/sec that you are prepared to consume when streaming to clients.

Default value is 1000.

CustomLog filename

Set access log file (uses standard Apache log file format). ’-’ is the standard output.

If not specified ffserver will produce no log.

In case the commandline option -d is specified this option is ignored, and the log is written to

standard output.

NoDaemon

Set no-daemon mode. This option is currently ignored since now ffserver will always work in

no-daemon mode, and is deprecated.

UseDefaults

NoDefaults

Control whether default codec options are used for the all streams or not. Each stream may overwrite

this setting for its own. Default is UseDefaults. The last occurrence overrides the previous if multiple

definitions exist.

5.3 Feed section# TOC

A Feed section defines a feed provided to ffserver.

Each live feed contains one video and/or audio sequence coming from an ffmpeg encoder or another

ffserver. This sequence may be encoded simultaneously with several codecs at several resolutions.

A feed instance specification is introduced by a line in the form:

<Feed FEED_FILENAME>

where FEED_FILENAME specifies the unique name of the FFM stream.

The following options are recognized within a Feed section.

File filename

ReadOnlyFile filename

Set the path where the feed file is stored on disk.

If not specified, the /tmp/FEED.ffm is assumed, where FEED is the feed name.

If ReadOnlyFile is used the file is marked as read-only and it will not be deleted or updated.

Truncate

Truncate the feed file, rather than appending to it. By default ffserver will append data to the file,

until the maximum file size value is reached (see FileMaxSize option).

FileMaxSize size

Set maximum size of the feed file in bytes. 0 means unlimited. The postfixes K (2^10), M (2^20), and

G (2^30) are recognized.

Default value is 5M.

Launch args

Launch an ffmpeg command when creating ffserver.

args must be a sequence of arguments to be provided to an ffmpeg instance. The first provided

argument is ignored, and it is replaced by a path with the same dirname of the ffserver instance,

followed by the remaining argument and terminated with a path corresponding to the feed.

When the launched process exits, ffserver will launch another program instance.

In case you need a more complex ffmpeg configuration, e.g. if you need to generate multiple FFM

feeds with a single ffmpeg instance, you should launch ffmpeg by hand.

This option is ignored in case the commandline option -n is specified.

ACL spec

Specify the list of IP address which are allowed or denied to write the feed. Multiple ACL options

can be specified.

5.4 Stream section# TOC

A Stream section defines a stream provided by ffserver, and identified by a single name.

The stream is sent when answering a request containing the stream name.

A stream section must be introduced by the line:

<Stream STREAM_NAME>

where STREAM_NAME specifies the unique name of the stream.

The following options are recognized within a Stream section.

Encoding options are marked with the encoding tag, and they are used to set the encoding parameters, and

are mapped to libavcodec encoding options. Not all encoding options are supported, in particular it is not

possible to set encoder private options. In order to override the encoding options specified by ffserver,

you can use the ffmpeg override_ffserver commandline option.

Only one of the Feed and File options should be set.

Feed feed_name

Set the input feed. feed_name must correspond to an existing feed defined in a Feed section.

When this option is set, encoding options are used to setup the encoding operated by the remote

ffmpeg process.

File filename

Set the filename of the pre-recorded input file to stream.

When this option is set, encoding options are ignored and the input file content is re-streamed as is.

Format format_name

Set the format of the output stream.

Must be the name of a format recognized by FFmpeg. If set to ‘status’, it is treated as a status

stream.

InputFormat format_name

Set input format. If not specified, it is automatically guessed.

Preroll n

Set this to the number of seconds backwards in time to start. Note that most players will buffer 5-10

seconds of video, and also you need to allow for a keyframe to appear in the data stream.

Default value is 0.

StartSendOnKey

Do not send stream until it gets the first key frame. By default ffserver will send data

immediately.

MaxTime n

Set the number of seconds to run. This value set the maximum duration of the stream a client will be

able to receive.

A value of 0 means that no limit is set on the stream duration.

ACL spec

Set ACL for the stream.

DynamicACL spec

RTSPOption option

MulticastAddress address

MulticastPort port

MulticastTTL integer

NoLoop

FaviconURL url

Set favicon (favourite icon) for the server status page. It is ignored for regular streams.

Author value

Comment value

Copyright value

Title value

Set metadata corresponding to the option. All these options are deprecated in favor of Metadata.

Metadata key value

Set metadata value on the output stream.

UseDefaults

NoDefaults

Control whether default codec options are used for the stream or not. Default is UseDefaults unless

disabled globally.

NoAudio

NoVideo

Suppress audio/video.

AudioCodec codec_name (encoding,audio)

Set audio codec.

AudioBitRate rate (encoding,audio)

Set bitrate for the audio stream in kbits per second.

AudioChannels n (encoding,audio)

Set number of audio channels.

AudioSampleRate n (encoding,audio)

Set sampling frequency for audio. When using low bitrates, you should lower this frequency to 22050

or 11025. The supported frequencies depend on the selected audio codec.

AVOptionAudio [codec:]option value (encoding,audio)

Set generic or private option for audio stream. Private option must be prefixed with codec name or

codec must be defined before.

AVPresetAudio preset (encoding,audio)

Set preset for audio stream.

VideoCodec codec_name (encoding,video)

Set video codec.

VideoBitRate n (encoding,video)

Set bitrate for the video stream in kbits per second.

VideoBitRateRange range (encoding,video)

Set video bitrate range.

A range must be specified in the form minrate-maxrate, and specifies the minrate and maxrate
encoding options expressed in kbits per second.

VideoBitRateRangeTolerance n (encoding,video)

Set video bitrate tolerance in kbits per second.

PixelFormat pixel_format (encoding,video)

Set video pixel format.

Debug integer (encoding,video)

Set video debug encoding option.

Strict integer (encoding,video)

Set video strict encoding option.

VideoBufferSize n (encoding,video)

Set ratecontrol buffer size, expressed in KB.

VideoFrameRate n (encoding,video)

Set number of video frames per second.

VideoSize (encoding,video)

Set size of the video frame, must be an abbreviation or in the form WxH. See (ffmpeg-utils)the Video

size section in the ffmpeg-utils(1) manual.

Default value is 160x128.

VideoIntraOnly (encoding,video)

Transmit only intra frames (useful for low bitrates, but kills frame rate).

VideoGopSize n (encoding,video)

If non-intra only, an intra frame is transmitted every VideoGopSize frames. Video synchronization

can only begin at an intra frame.

VideoTag tag (encoding,video)

Set video tag.

VideoHighQuality (encoding,video)

Video4MotionVector (encoding,video)

BitExact (encoding,video)

Set bitexact encoding flag.

IdctSimple (encoding,video)

Set simple IDCT algorithm.

Qscale n (encoding,video)

Enable constant quality encoding, and set video qscale (quantization scale) value, expressed in n QP

units.

VideoQMin n (encoding,video)

VideoQMax n (encoding,video)

Set video qmin/qmax.

VideoQDiff integer (encoding,video)

Set video qdiff encoding option.

LumiMask float (encoding,video)

DarkMask float (encoding,video)

Set lumi_mask/dark_mask encoding options.

AVOptionVideo [codec:]option value (encoding,video)

Set generic or private option for video stream. Private option must be prefixed with codec name or

codec must be defined before.

AVPresetVideo preset (encoding,video)

Set preset for video stream.

preset must be the path of a preset file.

5.4.1 Server status stream# TOC

A server status stream is a special stream which is used to show statistics about the ffserver

operations.

It must be specified setting the option Format to ‘status’.

5.5 Redirect section# TOC

A redirect section specifies where to redirect the requested URL to another page.

A redirect section must be introduced by the line:

<Redirect NAME>

where NAME is the name of the page which should be redirected.

It only accepts the option URL, which specify the redirection URL.

6 Stream examples# TOC

Multipart JPEG

<Stream test.mjpg>
Feed feed1.ffm
Format mpjpeg
VideoFrameRate 2
VideoIntraOnly
NoAudio
Strict -1
</Stream>

Single JPEG

<Stream test.jpg>
Feed feed1.ffm
Format jpeg
VideoFrameRate 2
VideoIntraOnly
VideoSize 352x240
NoAudio
Strict -1
</Stream>

Flash

<Stream test.swf>
Feed feed1.ffm
Format swf
VideoFrameRate 2
VideoIntraOnly
NoAudio
</Stream>

ASF compatible

<Stream test.asf>
Feed feed1.ffm
Format asf
VideoFrameRate 15
VideoSize 352x240
VideoBitRate 256
VideoBufferSize 40
VideoGopSize 30
AudioBitRate 64
StartSendOnKey
</Stream>

MP3 audio

<Stream test.mp3>
Feed feed1.ffm
Format mp2
AudioCodec mp3
AudioBitRate 64
AudioChannels 1
AudioSampleRate 44100
NoVideo
</Stream>

Ogg Vorbis audio

<Stream test.ogg>
Feed feed1.ffm
Metadata title "Stream title"
AudioBitRate 64
AudioChannels 2
AudioSampleRate 44100
NoVideo
</Stream>

Real with audio only at 32 kbits

<Stream test.ra>
Feed feed1.ffm
Format rm
AudioBitRate 32
NoVideo
</Stream>

Real with audio and video at 64 kbits

<Stream test.rm>
Feed feed1.ffm
Format rm
AudioBitRate 32
VideoBitRate 128
VideoFrameRate 25
VideoGopSize 25
</Stream>

For stream coming from a file: you only need to set the input filename and optionally a new format.

<Stream file.rm>
File "/usr/local/httpd/htdocs/tlive.rm"
NoAudio
</Stream>

<Stream file.asf>
File "/usr/local/httpd/htdocs/test.asf"
NoAudio
Metadata author "Me"
Metadata copyright "Super MegaCorp"
Metadata title "Test stream from disk"
Metadata comment "Test comment"
</Stream>

7 See Also# TOC

ffserver-all, the doc/ffserver.conf example, ffmpeg, ffplay, ffprobe, ffmpeg-utils, ffmpeg-scaler,

ffmpeg-resampler, ffmpeg-codecs, ffmpeg-bitstream-filters, ffmpeg-formats, ffmpeg-devices,

ffmpeg-protocols, ffmpeg-filters

8 Authors# TOC

The FFmpeg developers.

For details about the authorship, see the Git history of the project (git://source.ffmpeg.org/ffmpeg), e.g. by

typing the command git log in the FFmpeg source directory, or browsing the online repository at

http://source.ffmpeg.org.

Maintainers for the specific components are listed in the file MAINTAINERS in the source code tree.

This document was generated using makeinfo.

http://source.ffmpeg.org/
http://www.gnu.org/software/texinfo/

	ffserver Documentation
	Table of Contents
	1 Synopsis# TOC
	2 Description# TOC
	3 Detailed description# TOC
	3.1 FFM, FFM2 formats# TOC
	3.2 Status stream# TOC
	3.3 How do I make it work?# TOC
	3.4 What else can it do?# TOC
	3.5 Tips# TOC
	3.6 Why does the ?buffer / Preroll stop working after a time?# TOC
	3.7 Does the ?date= stuff work.# TOC

	4 Options# TOC
	4.1 Stream specifiers# TOC
	4.2 Generic options# TOC
	4.3 AVOptions# TOC
	4.4 Main options# TOC

	5 Configuration file syntax# TOC
	5.1 ACL syntax# TOC
	5.2 Global options# TOC
	5.3 Feed section# TOC
	5.4 Stream section# TOC
	5.4.1 Server status stream# TOC

	5.5 Redirect section# TOC

	6 Stream examples# TOC
	7 See Also# TOC
	8 Authors# TOC

