
ffmpeg Documentation

Table of Contents

1 Synopsis
2 Description
3 Detailed description

3.1 Filtering
3.1.1 Simple filtergraphs
3.1.2 Complex filtergraphs

3.2 Stream copy
4 Stream selection
5 Options

5.1 Stream specifiers
5.2 Generic options
5.3 AVOptions
5.4 Main options
5.5 Video Options
5.6 Advanced Video options
5.7 Audio Options
5.8 Advanced Audio options
5.9 Subtitle options
5.10 Advanced Subtitle options
5.11 Advanced options
5.12 Preset files

5.12.1 ffpreset files
5.12.2 avpreset files

6 Examples
6.1 Video and Audio grabbing
6.2 X11 grabbing
6.3 Video and Audio file format conversion

7 Syntax
7.1 Quoting and escaping

7.1.1 Examples
7.2 Date
7.3 Time duration

7.3.1 Examples
7.4 Video size
7.5 Video rate
7.6 Ratio
7.7 Color
7.8 Channel Layout

8 Expression Evaluation

9 Codec Options
10 Decoders
11 Video Decoders

11.1 rawvideo
11.1.1 Options

12 Audio Decoders
12.1 ac3

12.1.1 AC-3 Decoder Options
12.2 flac

12.2.1 FLAC Decoder options
12.3 ffwavesynth
12.4 libcelt
12.5 libgsm
12.6 libilbc

12.6.1 Options
12.7 libopencore-amrnb
12.8 libopencore-amrwb
12.9 libopus

13 Subtitles Decoders
13.1 dvbsub

13.1.1 Options
13.2 dvdsub

13.2.1 Options
13.3 libzvbi-teletext

13.3.1 Options
14 Encoders
15 Audio Encoders

15.1 aac
15.1.1 Options

15.2 ac3 and ac3_fixed
15.2.1 AC-3 Metadata

15.2.1.1 Metadata Control Options
15.2.1.2 Downmix Levels
15.2.1.3 Audio Production Information
15.2.1.4 Other Metadata Options

15.2.2 Extended Bitstream Information
15.2.2.1 Extended Bitstream Information - Part 1
15.2.2.2 Extended Bitstream Information - Part 2

15.2.3 Other AC-3 Encoding Options
15.2.4 Floating-Point-Only AC-3 Encoding Options

15.3 flac
15.3.1 Options

15.4 opus

15.4.1 Options
15.5 libfdk_aac

15.5.1 Options
15.5.2 Examples

15.6 libmp3lame
15.6.1 Options

15.7 libopencore-amrnb
15.7.1 Options

15.8 libopus
15.8.1 Option Mapping

15.9 libshine
15.9.1 Options

15.10 libtwolame
15.10.1 Options

15.11 libvo-amrwbenc
15.11.1 Options

15.12 libvorbis
15.12.1 Options

15.13 libwavpack
15.13.1 Options

15.14 mjpeg
15.14.1 Options

15.15 wavpack
15.15.1 Options

15.15.1.1 Shared options
15.15.1.2 Private options

16 Video Encoders
16.1 Hap

16.1.1 Options
16.2 jpeg2000

16.2.1 Options
16.3 libkvazaar

16.3.1 Options
16.4 libopenh264

16.4.1 Options
16.5 libtheora

16.5.1 Options
16.5.2 Examples

16.6 libvpx
16.6.1 Options

16.7 libwebp
16.7.1 Pixel Format
16.7.2 Options

16.8 libx264, libx264rgb
16.8.1 Supported Pixel Formats
16.8.2 Options

16.9 libx265
16.9.1 Options

16.10 libxvid
16.10.1 Options

16.11 mpeg2
16.11.1 Options

16.12 png
16.12.1 Private options

16.13 ProRes
16.13.1 Private Options for prores-ks
16.13.2 Speed considerations

16.14 QSV encoders
16.15 snow

16.15.1 Options
16.16 VAAPI encoders
16.17 vc2

16.17.1 Options
17 Subtitles Encoders

17.1 dvdsub
17.1.1 Options

18 Bitstream Filters
18.1 aac_adtstoasc
18.2 chomp
18.3 dca_core
18.4 dump_extra
18.5 extract_extradata
18.6 h264_metadata
18.7 h264_mp4toannexb
18.8 h264_redundant_pps
18.9 hevc_metadata
18.10 hevc_mp4toannexb
18.11 imxdump
18.12 mjpeg2jpeg
18.13 mjpegadump
18.14 mov2textsub
18.15 mp3decomp
18.16 mpeg2_metadata
18.17 mpeg4_unpack_bframes
18.18 noise
18.19 null

18.20 remove_extra
18.21 text2movsub
18.22 trace_headers
18.23 vp9_superframe
18.24 vp9_superframe_split
18.25 vp9_raw_reorder

19 Format Options
19.1 Format stream specifiers

20 Demuxers
20.1 aa
20.2 applehttp
20.3 apng
20.4 asf
20.5 concat

20.5.1 Syntax
20.5.2 Options
20.5.3 Examples

20.6 flv, live_flv
20.7 gif
20.8 hls
20.9 image2

20.9.1 Examples
20.10 libgme
20.11 libopenmpt
20.12 mov/mp4/3gp/QuickTime
20.13 mpegts
20.14 mpjpeg
20.15 rawvideo
20.16 sbg
20.17 tedcaptions

21 Muxers
21.1 aiff

21.1.1 Options
21.2 asf

21.2.1 Options
21.3 avi

21.3.1 Options
21.4 chromaprint

21.4.1 Options
21.5 crc

21.5.1 Examples
21.6 flv
21.7 dash

21.8 framecrc
21.8.1 Examples

21.9 framehash
21.9.1 Examples

21.10 framemd5
21.10.1 Examples

21.11 gif
21.12 hash

21.12.1 Examples
21.13 hls

21.13.1 Options
21.14 ico
21.15 image2

21.15.1 Examples
21.15.2 Options

21.16 matroska
21.16.1 Metadata
21.16.2 Options

21.17 md5
21.17.1 Examples

21.18 mov, mp4, ismv
21.18.1 Options
21.18.2 Example
21.18.3 Audible AAX

21.19 mp3
21.20 mpegts

21.20.1 Options
21.20.2 Example

21.21 mxf, mxf_d10
21.21.1 Options

21.22 null
21.23 nut
21.24 ogg
21.25 segment, stream_segment, ssegment

21.25.1 Options
21.25.2 Examples

21.26 smoothstreaming
21.27 fifo

21.27.1 Examples
21.28 tee

21.28.1 Examples
21.29 webm_dash_manifest

21.29.1 Options

21.29.2 Example
21.30 webm_chunk

21.30.1 Options
21.30.2 Example

22 Metadata
23 Protocol Options
24 Protocols

24.1 async
24.2 bluray
24.3 cache
24.4 concat
24.5 crypto
24.6 data
24.7 file
24.8 ftp
24.9 gopher
24.10 hls
24.11 http

24.11.1 HTTP Cookies
24.12 Icecast
24.13 mmst
24.14 mmsh
24.15 md5
24.16 pipe
24.17 prompeg
24.18 rtmp
24.19 rtmpe
24.20 rtmps
24.21 rtmpt
24.22 rtmpte
24.23 rtmpts
24.24 libsmbclient
24.25 libssh
24.26 librtmp rtmp, rtmpe, rtmps, rtmpt, rtmpte
24.27 rtp
24.28 rtsp

24.28.1 Examples
24.29 sap

24.29.1 Muxer
24.29.2 Demuxer

24.30 sctp
24.31 srtp
24.32 subfile

24.33 tee
24.34 tcp
24.35 tls
24.36 udp

24.36.1 Examples
24.37 unix

25 Device Options
26 Input Devices

26.1 alsa
26.1.1 Options

26.2 avfoundation
26.2.1 Options
26.2.2 Examples

26.3 bktr
26.3.1 Options

26.4 decklink
26.4.1 Options
26.4.2 Examples

26.5 kmsgrab
26.5.1 Options
26.5.2 Examples

26.6 libndi_newtek
26.6.1 Options
26.6.2 Examples

26.7 dshow
26.7.1 Options
26.7.2 Examples

26.8 fbdev
26.8.1 Options

26.9 gdigrab
26.9.1 Options

26.10 iec61883
26.10.1 Options
26.10.2 Examples

26.11 jack
26.11.1 Options

26.12 lavfi
26.12.1 Options
26.12.2 Examples

26.13 libcdio
26.13.1 Options

26.14 libdc1394
26.15 openal

26.15.1 Options
26.15.2 Examples

26.16 oss
26.16.1 Options

26.17 pulse
26.17.1 Options
26.17.2 Examples

26.18 sndio
26.18.1 Options

26.19 video4linux2, v4l2
26.19.1 Options

26.20 vfwcap
26.20.1 Options

26.21 x11grab
26.21.1 Options

27 Output Devices
27.1 alsa

27.1.1 Examples
27.2 caca

27.2.1 Options
27.2.2 Examples

27.3 decklink
27.3.1 Options
27.3.2 Examples

27.4 libndi_newtek
27.4.1 Options
27.4.2 Examples

27.5 fbdev
27.5.1 Options
27.5.2 Examples

27.6 opengl
27.6.1 Options
27.6.2 Examples

27.7 oss
27.8 pulse

27.8.1 Options
27.8.2 Examples

27.9 sdl
27.9.1 Options
27.9.2 Interactive commands
27.9.3 Examples

27.10 sndio
27.11 xv

27.11.1 Options
27.11.2 Examples

28 Resampler Options
29 Scaler Options
30 Filtering Introduction
31 graph2dot
32 Filtergraph description

32.1 Filtergraph syntax
32.2 Notes on filtergraph escaping

33 Timeline editing
34 Options for filters with several inputs (framesync)
35 Audio Filters

35.1 acompressor
35.2 acontrast
35.3 acopy
35.4 acrossfade

35.4.1 Examples
35.5 acrusher
35.6 adelay

35.6.1 Examples
35.7 aecho

35.7.1 Examples
35.8 aemphasis
35.9 aeval

35.9.1 Examples
35.10 afade

35.10.1 Examples
35.11 afftfilt

35.11.1 Examples
35.12 afir

35.12.1 Examples
35.13 aformat
35.14 agate
35.15 alimiter
35.16 allpass
35.17 aloop
35.18 amerge

35.18.1 Examples
35.19 amix
35.20 anequalizer

35.20.1 Examples
35.20.2 Commands

35.21 anull

35.22 apad
35.22.1 Examples

35.23 aphaser
35.24 apulsator
35.25 aresample

35.25.1 Examples
35.26 areverse

35.26.1 Examples
35.27 asetnsamples
35.28 asetrate
35.29 ashowinfo
35.30 astats
35.31 atempo

35.31.1 Examples
35.32 atrim
35.33 bandpass
35.34 bandreject
35.35 bass
35.36 biquad
35.37 bs2b
35.38 channelmap
35.39 channelsplit
35.40 chorus

35.40.1 Examples
35.41 compand

35.41.1 Examples
35.42 compensationdelay
35.43 crossfeed
35.44 crystalizer
35.45 dcshift
35.46 dynaudnorm
35.47 earwax
35.48 equalizer

35.48.1 Examples
35.49 extrastereo
35.50 firequalizer

35.50.1 Examples
35.51 flanger
35.52 haas
35.53 hdcd
35.54 headphone

35.54.1 Examples
35.55 highpass

35.56 join
35.57 ladspa

35.57.1 Examples
35.57.2 Commands

35.58 loudnorm
35.59 lowpass

35.59.1 Examples
35.60 lv2

35.60.1 Examples
35.61 mcompand
35.62 pan

35.62.1 Mixing examples
35.62.2 Remapping examples

35.63 replaygain
35.64 resample
35.65 rubberband
35.66 sidechaincompress

35.66.1 Examples
35.67 sidechaingate
35.68 silencedetect

35.68.1 Examples
35.69 silenceremove

35.69.1 Examples
35.70 sofalizer

35.70.1 Examples
35.71 stereotools

35.71.1 Examples
35.72 stereowiden
35.73 superequalizer
35.74 surround
35.75 treble
35.76 tremolo
35.77 vibrato
35.78 volume

35.78.1 Commands
35.78.2 Examples

35.79 volumedetect
35.79.1 Examples

36 Audio Sources
36.1 abuffer

36.1.1 Examples
36.2 aevalsrc

36.2.1 Examples

36.3 anullsrc
36.3.1 Examples

36.4 flite
36.4.1 Examples

36.5 anoisesrc
36.5.1 Examples

36.6 sine
36.6.1 Examples

37 Audio Sinks
37.1 abuffersink
37.2 anullsink

38 Video Filters
38.1 alphaextract
38.2 alphamerge
38.3 ass
38.4 atadenoise
38.5 avgblur
38.6 bbox
38.7 bitplanenoise
38.8 blackdetect
38.9 blackframe
38.10 blend, tblend

38.10.1 Examples
38.11 boxblur

38.11.1 Examples
38.12 bwdif
38.13 chromakey

38.13.1 Examples
38.14 ciescope
38.15 codecview

38.15.1 Examples
38.16 colorbalance

38.16.1 Examples
38.17 colorkey

38.17.1 Examples
38.18 colorlevels

38.18.1 Examples
38.19 colorchannelmixer

38.19.1 Examples
38.20 colormatrix
38.21 colorspace
38.22 convolution

38.22.1 Examples

38.23 convolve
38.24 copy
38.25 coreimage

38.25.1 Examples
38.26 crop

38.26.1 Examples
38.26.2 Commands

38.27 cropdetect
38.28 curves

38.28.1 Examples
38.29 datascope
38.30 dctdnoiz

38.30.1 Examples
38.31 deband
38.32 decimate
38.33 deflate
38.34 deflicker
38.35 dejudder
38.36 delogo

38.36.1 Examples
38.37 deshake
38.38 despill
38.39 detelecine
38.40 dilation
38.41 displace

38.41.1 Examples
38.42 drawbox

38.42.1 Examples
38.43 drawgrid

38.43.1 Examples
38.44 drawtext

38.44.1 Syntax
38.44.2 Text expansion
38.44.3 Examples

38.45 edgedetect
38.45.1 Examples

38.46 eq
38.46.1 Commands

38.47 erosion
38.48 extractplanes

38.48.1 Examples
38.49 elbg
38.50 fade

38.50.1 Examples
38.51 fftfilt

38.51.1 Examples
38.52 field
38.53 fieldhint
38.54 fieldmatch

38.54.1 p/c/n/u/b meaning
38.54.1.1 p/c/n
38.54.1.2 u/b

38.54.2 Examples
38.55 fieldorder
38.56 fifo, afifo
38.57 fillborders
38.58 find_rect

38.58.1 Examples
38.59 cover_rect

38.59.1 Examples
38.60 floodfill
38.61 format

38.61.1 Examples
38.62 fps

38.62.1 Examples
38.63 framepack
38.64 framerate
38.65 framestep
38.66 frei0r

38.66.1 Examples
38.67 fspp
38.68 gblur
38.69 geq

38.69.1 Examples
38.70 gradfun

38.70.1 Examples
38.71 haldclut

38.71.1 Workflow examples
38.71.1.1 Hald CLUT video stream
38.71.1.2 Hald CLUT with preview

38.72 hflip
38.73 histeq
38.74 histogram

38.74.1 Examples
38.75 hqdn3d
38.76 hwdownload

38.77 hwmap
38.78 hwupload
38.79 hwupload_cuda
38.80 hqx
38.81 hstack
38.82 hue

38.82.1 Examples
38.82.2 Commands

38.83 hysteresis
38.84 idet
38.85 il
38.86 inflate
38.87 interlace
38.88 kerndeint

38.88.1 Examples
38.89 lenscorrection

38.89.1 Options
38.90 libvmaf
38.91 limiter
38.92 loop
38.93 lut3d
38.94 lumakey
38.95 lut, lutrgb, lutyuv

38.95.1 Examples
38.96 lut2, tlut2

38.96.1 Examples
38.97 maskedclamp
38.98 maskedmerge
38.99 mcdeint
38.100 mergeplanes

38.100.1 Examples
38.101 mestimate
38.102 midequalizer
38.103 minterpolate
38.104 mix
38.105 mpdecimate
38.106 negate
38.107 nlmeans
38.108 nnedi
38.109 noformat

38.109.1 Examples
38.110 noise

38.110.1 Examples

38.111 normalize
38.111.1 Examples

38.112 null
38.113 ocr
38.114 ocv

38.114.1 dilate
38.114.2 erode
38.114.3 smooth

38.115 oscilloscope
38.115.1 Examples

38.116 overlay
38.116.1 Commands
38.116.2 Examples

38.117 owdenoise
38.118 pad

38.118.1 Examples
38.119 palettegen

38.119.1 Examples
38.120 paletteuse

38.120.1 Examples
38.121 perspective
38.122 phase
38.123 pixdesctest
38.124 pixscope
38.125 pp

38.125.1 Examples
38.126 pp7
38.127 premultiply
38.128 prewitt
38.129 pseudocolor

38.129.1 Examples
38.130 psnr
38.131 pullup
38.132 qp

38.132.1 Examples
38.133 random
38.134 readeia608

38.134.1 Examples
38.135 readvitc

38.135.1 Examples
38.136 remap
38.137 removegrain
38.138 removelogo

38.139 repeatfields
38.140 reverse

38.140.1 Examples
38.141 roberts
38.142 rotate

38.142.1 Examples
38.142.2 Commands

38.143 sab
38.144 scale

38.144.1 Options
38.144.2 Examples
38.144.3 Commands

38.145 scale_npp
38.146 scale2ref

38.146.1 Examples
38.147 selectivecolor

38.147.1 Examples
38.148 separatefields
38.149 setdar, setsar

38.149.1 Examples
38.150 setfield
38.151 showinfo
38.152 showpalette
38.153 shuffleframes

38.153.1 Examples
38.154 shuffleplanes

38.154.1 Examples
38.155 signalstats

38.155.1 Examples
38.156 signature

38.156.1 Examples
38.157 smartblur
38.158 ssim
38.159 stereo3d

38.159.1 Examples
38.160 streamselect, astreamselect

38.160.1 Commands
38.160.2 Examples

38.161 sobel
38.162 spp
38.163 subtitles
38.164 super2xsai
38.165 swaprect

38.166 swapuv
38.167 telecine
38.168 threshold

38.168.1 Examples
38.169 thumbnail

38.169.1 Examples
38.170 tile

38.170.1 Examples
38.171 tinterlace
38.172 tonemap

38.172.1 Options
38.173 transpose
38.174 trim
38.175 unpremultiply
38.176 unsharp

38.176.1 Examples
38.177 uspp
38.178 vaguedenoiser
38.179 vectorscope
38.180 vidstabdetect

38.180.1 Examples
38.181 vidstabtransform

38.181.1 Options
38.181.2 Examples

38.182 vflip
38.183 vignette

38.183.1 Expressions
38.183.2 Examples

38.184 vmafmotion
38.185 vstack
38.186 w3fdif
38.187 waveform
38.188 weave, doubleweave

38.188.1 Examples
38.189 xbr
38.190 yadif
38.191 zoompan

38.191.1 Examples
38.192 zscale

38.192.1 Options
39 Video Sources

39.1 buffer
39.2 cellauto

39.2.1 Examples
39.3 coreimagesrc

39.3.1 Examples
39.4 mandelbrot
39.5 mptestsrc
39.6 frei0r_src
39.7 life

39.7.1 Examples
39.8 allrgb, allyuv, color, haldclutsrc, nullsrc, rgbtestsrc, smptebars, smptehdbars, testsrc,
testsrc2, yuvtestsrc

39.8.1 Examples
39.8.2 Commands

40 Video Sinks
40.1 buffersink
40.2 nullsink

41 Multimedia Filters
41.1 abitscope
41.2 ahistogram
41.3 aphasemeter
41.4 avectorscope

41.4.1 Examples
41.5 bench, abench

41.5.1 Examples
41.6 concat

41.6.1 Examples
41.7 drawgraph, adrawgraph
41.8 ebur128

41.8.1 Examples
41.9 interleave, ainterleave

41.9.1 Examples
41.10 metadata, ametadata

41.10.1 Examples
41.11 perms, aperms
41.12 realtime, arealtime
41.13 select, aselect

41.13.1 Examples
41.14 sendcmd, asendcmd

41.14.1 Commands syntax
41.14.2 Examples

41.15 setpts, asetpts
41.15.1 Examples

41.16 setrange
41.17 settb, asettb

41.17.1 Examples
41.18 showcqt

41.18.1 Examples
41.19 showfreqs
41.20 showspectrum

41.20.1 Examples
41.21 showspectrumpic

41.21.1 Examples
41.22 showvolume
41.23 showwaves

41.23.1 Examples
41.24 showwavespic

41.24.1 Examples
41.25 sidedata, asidedata
41.26 spectrumsynth

41.26.1 Examples
41.27 split, asplit

41.27.1 Examples
41.28 zmq, azmq

41.28.1 Examples
42 Multimedia Sources

42.1 amovie
42.2 movie

42.2.1 Examples
42.2.2 Commands

43 See Also
44 Authors

1 Synopsis# TOC

ffmpeg [global_options] {[input_file_options] -i input_url} ... {[output_file_options] output_url}
...

2 Description# TOC

ffmpeg is a very fast video and audio converter that can also grab from a live audio/video source. It can
also convert between arbitrary sample rates and resize video on the fly with a high quality polyphase filter.

ffmpeg reads from an arbitrary number of input "files" (which can be regular files, pipes, network
streams, grabbing devices, etc.), specified by the -i option, and writes to an arbitrary number of output
"files", which are specified by a plain output url. Anything found on the command line which cannot be
interpreted as an option is considered to be an output url.

Each input or output url can, in principle, contain any number of streams of different types
(video/audio/subtitle/attachment/data). The allowed number and/or types of streams may be limited by the
container format. Selecting which streams from which inputs will go into which output is either done
automatically or with the -map option (see the Stream selection chapter).

To refer to input files in options, you must use their indices (0-based). E.g. the first input file is 0, the
second is 1, etc. Similarly, streams within a file are referred to by their indices. E.g. 2:3 refers to the
fourth stream in the third input file. Also see the Stream specifiers chapter.

As a general rule, options are applied to the next specified file. Therefore, order is important, and you can
have the same option on the command line multiple times. Each occurrence is then applied to the next
input or output file. Exceptions from this rule are the global options (e.g. verbosity level), which should be
specified first.

Do not mix input and output files – first specify all input files, then all output files. Also do not mix
options which belong to different files. All options apply ONLY to the next input or output file and are
reset between files.

To set the video bitrate of the output file to 64 kbit/s:

ffmpeg -i input.avi -b:v 64k -bufsize 64k output.avi

To force the frame rate of the output file to 24 fps:

ffmpeg -i input.avi -r 24 output.avi

To force the frame rate of the input file (valid for raw formats only) to 1 fps and the frame rate of the
output file to 24 fps:

ffmpeg -r 1 -i input.m2v -r 24 output.avi

The format option may be needed for raw input files.

3 Detailed description# TOC

The transcoding process in ffmpeg for each output can be described by the following diagram:

 _______ ______________
| | | |
| input | demuxer | encoded data | decoder
| file | ---------> | packets | -----+
|_______| |______________| |
 v

 | |
 | decoded |
 | frames |
 |_________|
 ________ ______________ |

| | | | |
| output | <-------- | encoded data | <----+
| file | muxer | packets | encoder
|________| |______________|

ffmpeg calls the libavformat library (containing demuxers) to read input files and get packets containing
encoded data from them. When there are multiple input files, ffmpeg tries to keep them synchronized by
tracking lowest timestamp on any active input stream.

Encoded packets are then passed to the decoder (unless streamcopy is selected for the stream, see further
for a description). The decoder produces uncompressed frames (raw video/PCM audio/...) which can be
processed further by filtering (see next section). After filtering, the frames are passed to the encoder,
which encodes them and outputs encoded packets. Finally those are passed to the muxer, which writes the
encoded packets to the output file.

3.1 Filtering# TOC

Before encoding, ffmpeg can process raw audio and video frames using filters from the libavfilter
library. Several chained filters form a filter graph. ffmpeg distinguishes between two types of
filtergraphs: simple and complex.

3.1.1 Simple filtergraphs# TOC

Simple filtergraphs are those that have exactly one input and output, both of the same type. In the above
diagram they can be represented by simply inserting an additional step between decoding and encoding:

 _________ ______________
decoded		encoded data	
frames	\ _	packets	
_________	\ /		______________
 \ __________ /
 simple _\|| | / encoder
 filtergraph | filtered |/
 | frames |
 |__________|

Simple filtergraphs are configured with the per-stream -filter option (with -vf and -af aliases for
video and audio respectively). A simple filtergraph for video can look for example like this:

 _______ _____________ _______ ________
input	--->	deinterlace	--->	scale	--->	output
_______		_____________		_______		________

Note that some filters change frame properties but not frame contents. E.g. the fps filter in the example
above changes number of frames, but does not touch the frame contents. Another example is the setpts
filter, which only sets timestamps and otherwise passes the frames unchanged.

3.1.2 Complex filtergraphs# TOC

Complex filtergraphs are those which cannot be described as simply a linear processing chain applied to
one stream. This is the case, for example, when the graph has more than one input and/or output, or when
output stream type is different from input. They can be represented with the following diagram:

| |
| input 0 |\ __________
|_________| \ | |
 \ _________ /| output 0 |
 \ | | / |__________|
 _________ \| complex | /
| | | |/
| input 1 |---->| filter |\
|_________| | | \ __________
 /| graph | \ | |
 / | | \| output 1 |
 _________ / |_________| |__________|
| | /
| input 2 |/
|_________|

Complex filtergraphs are configured with the -filter_complex option. Note that this option is global,
since a complex filtergraph, by its nature, cannot be unambiguously associated with a single stream or file.

The -lavfi option is equivalent to -filter_complex.

A trivial example of a complex filtergraph is the overlay filter, which has two video inputs and one
video output, containing one video overlaid on top of the other. Its audio counterpart is the amix filter.

3.2 Stream copy# TOC

Stream copy is a mode selected by supplying the copy parameter to the -codec option. It makes
ffmpeg omit the decoding and encoding step for the specified stream, so it does only demuxing and
muxing. It is useful for changing the container format or modifying container-level metadata. The diagram
above will, in this case, simplify to this:

 _______ ______________ ________
input	demuxer	encoded data	muxer	output
file	--------->	packets	------->	file
_______		______________		________

Since there is no decoding or encoding, it is very fast and there is no quality loss. However, it might not
work in some cases because of many factors. Applying filters is obviously also impossible, since filters
work on uncompressed data.

4 Stream selection# TOC

By default, ffmpeg includes only one stream of each type (video, audio, subtitle) present in the input
files and adds them to each output file. It picks the "best" of each based upon the following criteria: for
video, it is the stream with the highest resolution, for audio, it is the stream with the most channels, for
subtitles, it is the first subtitle stream. In the case where several streams of the same type rate equally, the
stream with the lowest index is chosen.

You can disable some of those defaults by using the -vn/-an/-sn/-dn options. For full manual
control, use the -map option, which disables the defaults just described.

5 Options# TOC

All the numerical options, if not specified otherwise, accept a string representing a number as input, which
may be followed by one of the SI unit prefixes, for example: ’K’, ’M’, or ’G’.

If ’i’ is appended to the SI unit prefix, the complete prefix will be interpreted as a unit prefix for binary
multiples, which are based on powers of 1024 instead of powers of 1000. Appending ’B’ to the SI unit
prefix multiplies the value by 8. This allows using, for example: ’KB’, ’MiB’, ’G’ and ’B’ as number
suffixes.

Options which do not take arguments are boolean options, and set the corresponding value to true. They
can be set to false by prefixing the option name with "no". For example using "-nofoo" will set the boolean
option with name "foo" to false.

5.1 Stream specifiers# TOC

Some options are applied per-stream, e.g. bitrate or codec. Stream specifiers are used to precisely specify
which stream(s) a given option belongs to.

A stream specifier is a string generally appended to the option name and separated from it by a colon. E.g.
-codec:a:1 ac3 contains the a:1 stream specifier, which matches the second audio stream.
Therefore, it would select the ac3 codec for the second audio stream.

A stream specifier can match several streams, so that the option is applied to all of them. E.g. the stream
specifier in -b:a 128k matches all audio streams.

An empty stream specifier matches all streams. For example, -codec copy or -codec: copy would
copy all the streams without reencoding.

Possible forms of stream specifiers are:

stream_index

Matches the stream with this index. E.g. -threads:1 4 would set the thread count for the second
stream to 4.

stream_type[:stream_index]

stream_type is one of following: ’v’ or ’V’ for video, ’a’ for audio, ’s’ for subtitle, ’d’ for data, and
’t’ for attachments. ’v’ matches all video streams, ’V’ only matches video streams which are not
attached pictures, video thumbnails or cover arts. If stream_index is given, then it matches stream
number stream_index of this type. Otherwise, it matches all streams of this type.

p:program_id[:stream_index]

If stream_index is given, then it matches the stream with number stream_index in the program with
the id program_id. Otherwise, it matches all streams in the program.

#stream_id or i:stream_id

Match the stream by stream id (e.g. PID in MPEG-TS container).

m:key[:value]

Matches streams with the metadata tag key having the specified value. If value is not given, matches
streams that contain the given tag with any value.

u

Matches streams with usable configuration, the codec must be defined and the essential information
such as video dimension or audio sample rate must be present.

Note that in ffmpeg, matching by metadata will only work properly for input files.

5.2 Generic options# TOC

These options are shared amongst the ff* tools.

-L

Show license.

-h, -?, -help, --help [arg]

Show help. An optional parameter may be specified to print help about a specific item. If no
argument is specified, only basic (non advanced) tool options are shown.

Possible values of arg are:

long

Print advanced tool options in addition to the basic tool options.

full

Print complete list of options, including shared and private options for encoders, decoders,
demuxers, muxers, filters, etc.

decoder=decoder_name

Print detailed information about the decoder named decoder_name. Use the -decoders option
to get a list of all decoders.

encoder=encoder_name

Print detailed information about the encoder named encoder_name. Use the -encoders option
to get a list of all encoders.

demuxer=demuxer_name

Print detailed information about the demuxer named demuxer_name. Use the -formats option
to get a list of all demuxers and muxers.

muxer=muxer_name

Print detailed information about the muxer named muxer_name. Use the -formats option to
get a list of all muxers and demuxers.

filter=filter_name

Print detailed information about the filter name filter_name. Use the -filters option to get a
list of all filters.

-version

Show version.

-formats

Show available formats (including devices).

-demuxers

Show available demuxers.

-muxers

Show available muxers.

-devices

Show available devices.

-codecs

Show all codecs known to libavcodec.

Note that the term ’codec’ is used throughout this documentation as a shortcut for what is more
correctly called a media bitstream format.

-decoders

Show available decoders.

-encoders

Show all available encoders.

-bsfs

Show available bitstream filters.

-protocols

Show available protocols.

-filters

Show available libavfilter filters.

-pix_fmts

Show available pixel formats.

-sample_fmts

Show available sample formats.

-layouts

Show channel names and standard channel layouts.

-colors

Show recognized color names.

-sources device[,opt1=val1[,opt2=val2]...]

Show autodetected sources of the input device. Some devices may provide system-dependent source
names that cannot be autodetected. The returned list cannot be assumed to be always complete.

ffmpeg -sources pulse,server=192.168.0.4

-sinks device[,opt1=val1[,opt2=val2]...]

Show autodetected sinks of the output device. Some devices may provide system-dependent sink
names that cannot be autodetected. The returned list cannot be assumed to be always complete.

ffmpeg -sinks pulse,server=192.168.0.4

-loglevel [repeat+]loglevel | -v [repeat+]loglevel

Set the logging level used by the library. Adding "repeat+" indicates that repeated log output should
not be compressed to the first line and the "Last message repeated n times" line will be omitted.
"repeat" can also be used alone. If "repeat" is used alone, and with no prior loglevel set, the default
loglevel will be used. If multiple loglevel parameters are given, using ’repeat’ will not change the
loglevel. loglevel is a string or a number containing one of the following values:

‘quiet, -8’

Show nothing at all; be silent.

‘panic, 0’

Only show fatal errors which could lead the process to crash, such as an assertion failure. This is
not currently used for anything.

‘fatal, 8’

Only show fatal errors. These are errors after which the process absolutely cannot continue.

‘error, 16’

Show all errors, including ones which can be recovered from.

‘warning, 24’

Show all warnings and errors. Any message related to possibly incorrect or unexpected events
will be shown.

‘info, 32’

Show informative messages during processing. This is in addition to warnings and errors. This is
the default value.

‘verbose, 40’

Same as info, except more verbose.

‘debug, 48’

Show everything, including debugging information.

‘trace, 56’

By default the program logs to stderr. If coloring is supported by the terminal, colors are used to mark
errors and warnings. Log coloring can be disabled setting the environment variable
AV_LOG_FORCE_NOCOLOR or NO_COLOR, or can be forced setting the environment variable
AV_LOG_FORCE_COLOR. The use of the environment variable NO_COLOR is deprecated and will
be dropped in a future FFmpeg version.

-report

Dump full command line and console output to a file named program-YYYYMMDD-HHMMSS.log
in the current directory. This file can be useful for bug reports. It also implies -loglevel
verbose.

Setting the environment variable FFREPORT to any value has the same effect. If the value is a
’:’-separated key=value sequence, these options will affect the report; option values must be escaped
if they contain special characters or the options delimiter ’:’ (see the “Quoting and escaping” section
in the ffmpeg-utils manual).

The following options are recognized:

file

set the file name to use for the report; %p is expanded to the name of the program, %t is
expanded to a timestamp, %% is expanded to a plain %

level

set the log verbosity level using a numerical value (see -loglevel).

For example, to output a report to a file named ffreport.log using a log level of 32 (alias for
log level info):

FFREPORT=file=ffreport.log:level=32 ffmpeg -i input output

Errors in parsing the environment variable are not fatal, and will not appear in the report.

-hide_banner

Suppress printing banner.

All FFmpeg tools will normally show a copyright notice, build options and library versions. This
option can be used to suppress printing this information.

-cpuflags flags (global)

Allows setting and clearing cpu flags. This option is intended for testing. Do not use it unless you
know what you’re doing.

ffmpeg -cpuflags -sse+mmx ...
ffmpeg -cpuflags mmx ...
ffmpeg -cpuflags 0 ...

Possible flags for this option are:

‘x86’
‘mmx’
‘mmxext’
‘sse’
‘sse2’
‘sse2slow’
‘sse3’
‘sse3slow’
‘ssse3’
‘atom’
‘sse4.1’
‘sse4.2’
‘avx’
‘avx2’
‘xop’
‘fma3’
‘fma4’
‘3dnow’
‘3dnowext’
‘bmi1’
‘bmi2’
‘cmov’

‘ARM’
‘armv5te’
‘armv6’
‘armv6t2’
‘vfp’
‘vfpv3’
‘neon’
‘setend’

‘AArch64’
‘armv8’
‘vfp’
‘neon’

‘PowerPC’
‘altivec’

‘Specific Processors’

‘pentium2’
‘pentium3’
‘pentium4’
‘k6’
‘k62’
‘athlon’
‘athlonxp’
‘k8’

5.3 AVOptions# TOC

These options are provided directly by the libavformat, libavdevice and libavcodec libraries. To see the list
of available AVOptions, use the -help option. They are separated into two categories:

generic

These options can be set for any container, codec or device. Generic options are listed under
AVFormatContext options for containers/devices and under AVCodecContext options for codecs.

private

These options are specific to the given container, device or codec. Private options are listed under
their corresponding containers/devices/codecs.

For example to write an ID3v2.3 header instead of a default ID3v2.4 to an MP3 file, use the
id3v2_version private option of the MP3 muxer:

ffmpeg -i input.flac -id3v2_version 3 out.mp3

All codec AVOptions are per-stream, and thus a stream specifier should be attached to them.

Note: the -nooption syntax cannot be used for boolean AVOptions, use -option 0/-option 1.

Note: the old undocumented way of specifying per-stream AVOptions by prepending v/a/s to the options
name is now obsolete and will be removed soon.

5.4 Main options# TOC

-f fmt (input/output)

Force input or output file format. The format is normally auto detected for input files and guessed
from the file extension for output files, so this option is not needed in most cases.

-i url (input)

input file url

-y (global)

Overwrite output files without asking.

-n (global)

Do not overwrite output files, and exit immediately if a specified output file already exists.

-stream_loop number (input)

Set number of times input stream shall be looped. Loop 0 means no loop, loop -1 means infinite loop.

-c[:stream_specifier] codec (input/output,per-stream)
-codec[:stream_specifier] codec (input/output,per-stream)

Select an encoder (when used before an output file) or a decoder (when used before an input file) for
one or more streams. codec is the name of a decoder/encoder or a special value copy (output only) to
indicate that the stream is not to be re-encoded.

For example

ffmpeg -i INPUT -map 0 -c:v libx264 -c:a copy OUTPUT

encodes all video streams with libx264 and copies all audio streams.

For each stream, the last matching c option is applied, so

ffmpeg -i INPUT -map 0 -c copy -c:v:1 libx264 -c:a:137 libvorbis OUTPUT

will copy all the streams except the second video, which will be encoded with libx264, and the 138th
audio, which will be encoded with libvorbis.

-t duration (input/output)

When used as an input option (before -i), limit the duration of data read from the input file.

When used as an output option (before an output url), stop writing the output after its duration
reaches duration.

duration must be a time duration specification, see (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual.

-to and -t are mutually exclusive and -t has priority.

-to position (input/output)

Stop writing the output or reading the input at position. position must be a time duration
specification, see (ffmpeg-utils)the Time duration section in the ffmpeg-utils(1) manual.

-to and -t are mutually exclusive and -t has priority.

-fs limit_size (output)

Set the file size limit, expressed in bytes. No further chunk of bytes is written after the limit is
exceeded. The size of the output file is slightly more than the requested file size.

-ss position (input/output)

When used as an input option (before -i), seeks in this input file to position. Note that in most
formats it is not possible to seek exactly, so ffmpeg will seek to the closest seek point before
position. When transcoding and -accurate_seek is enabled (the default), this extra segment
between the seek point and position will be decoded and discarded. When doing stream copy or when
-noaccurate_seek is used, it will be preserved.

When used as an output option (before an output url), decodes but discards input until the timestamps
reach position.

position must be a time duration specification, see (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual.

-sseof position (input/output)

Like the -ss option but relative to the "end of file". That is negative values are earlier in the file, 0 is
at EOF.

-itsoffset offset (input)

Set the input time offset.

offset must be a time duration specification, see (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual.

The offset is added to the timestamps of the input files. Specifying a positive offset means that the
corresponding streams are delayed by the time duration specified in offset.

-timestamp date (output)

Set the recording timestamp in the container.

date must be a date specification, see (ffmpeg-utils)the Date section in the ffmpeg-utils(1) manual.

-metadata[:metadata_specifier] key=value (output,per-metadata)

Set a metadata key/value pair.

An optional metadata_specifier may be given to set metadata on streams, chapters or programs. See
-map_metadata documentation for details.

This option overrides metadata set with -map_metadata. It is also possible to delete metadata by
using an empty value.

For example, for setting the title in the output file:

ffmpeg -i in.avi -metadata title="my title" out.flv

To set the language of the first audio stream:

ffmpeg -i INPUT -metadata:s:a:0 language=eng OUTPUT

-disposition[:stream_specifier] value (output,per-stream)

Sets the disposition for a stream.

This option overrides the disposition copied from the input stream. It is also possible to delete the
disposition by setting it to 0.

The following dispositions are recognized:

default
dub
original
comment
lyrics
karaoke
forced
hearing_impaired
visual_impaired
clean_effects
captions
descriptions
metadata

For example, to make the second audio stream the default stream:

ffmpeg -i in.mkv -disposition:a:1 default out.mkv

To make the second subtitle stream the default stream and remove the default disposition from the
first subtitle stream:

ffmpeg -i INPUT -disposition:s:0 0 -disposition:s:1 default OUTPUT

-program
[title=title:][program_num=program_num:]st=stream[:st=stream...]
(output)

Creates a program with the specified title, program_num and adds the specified stream(s) to it.

-target type (output)

Specify target file type (vcd, svcd, dvd, dv, dv50). type may be prefixed with pal-, ntsc- or
film- to use the corresponding standard. All the format options (bitrate, codecs, buffer sizes) are
then set automatically. You can just type:

ffmpeg -i myfile.avi -target vcd /tmp/vcd.mpg

Nevertheless you can specify additional options as long as you know they do not conflict with the
standard, as in:

ffmpeg -i myfile.avi -target vcd -bf 2 /tmp/vcd.mpg

-dframes number (output)

Set the number of data frames to output. This is an obsolete alias for -frames:d, which you should
use instead.

-frames[:stream_specifier] framecount (output,per-stream)

Stop writing to the stream after framecount frames.

-q[:stream_specifier] q (output,per-stream)
-qscale[:stream_specifier] q (output,per-stream)

Use fixed quality scale (VBR). The meaning of q/qscale is codec-dependent. If qscale is used without
a stream_specifier then it applies only to the video stream, this is to maintain compatibility with
previous behavior and as specifying the same codec specific value to 2 different codecs that is audio
and video generally is not what is intended when no stream_specifier is used.

-filter[:stream_specifier] filtergraph (output,per-stream)

Create the filtergraph specified by filtergraph and use it to filter the stream.

filtergraph is a description of the filtergraph to apply to the stream, and must have a single input and
a single output of the same type of the stream. In the filtergraph, the input is associated to the label
in, and the output to the label out. See the ffmpeg-filters manual for more information about the
filtergraph syntax.

See the -filter_complex option if you want to create filtergraphs with multiple inputs and/or outputs.

-filter_script[:stream_specifier] filename (output,per-stream)

This option is similar to -filter, the only difference is that its argument is the name of the file
from which a filtergraph description is to be read.

-filter_threads nb_threads (global)

Defines how many threads are used to process a filter pipeline. Each pipeline will produce a thread
pool with this many threads available for parallel processing. The default is the number of available CPUs.

-pre[:stream_specifier] preset_name (output,per-stream)

Specify the preset for matching stream(s).

-stats (global)

Print encoding progress/statistics. It is on by default, to explicitly disable it you need to specify
-nostats.

-progress url (global)

Send program-friendly progress information to url.

Progress information is written approximately every second and at the end of the encoding process. It
is made of "key=value" lines. key consists of only alphanumeric characters. The last key of a
sequence of progress information is always "progress".

-stdin

Enable interaction on standard input. On by default unless standard input is used as an input. To
explicitly disable interaction you need to specify -nostdin.

Disabling interaction on standard input is useful, for example, if ffmpeg is in the background process
group. Roughly the same result can be achieved with ffmpeg ... < /dev/null but it requires
a shell.

-debug_ts (global)

Print timestamp information. It is off by default. This option is mostly useful for testing and
debugging purposes, and the output format may change from one version to another, so it should not
be employed by portable scripts.

See also the option -fdebug ts.

-attach filename (output)

Add an attachment to the output file. This is supported by a few formats like Matroska for e.g. fonts
used in rendering subtitles. Attachments are implemented as a specific type of stream, so this option
will add a new stream to the file. It is then possible to use per-stream options on this stream in the
usual way. Attachment streams created with this option will be created after all the other streams (i.e.
those created with -map or automatic mappings).

Note that for Matroska you also have to set the mimetype metadata tag:

ffmpeg -i INPUT -attach DejaVuSans.ttf -metadata:s:2 mimetype=application/x-truetype-font out.mkv

(assuming that the attachment stream will be third in the output file).

-dump_attachment[:stream_specifier] filename (input,per-stream)

Extract the matching attachment stream into a file named filename. If filename is empty, then the
value of the filename metadata tag will be used.

E.g. to extract the first attachment to a file named ’out.ttf’:

ffmpeg -dump_attachment:t:0 out.ttf -i INPUT

To extract all attachments to files determined by the filename tag:

ffmpeg -dump_attachment:t "" -i INPUT

Technical note – attachments are implemented as codec extradata, so this option can actually be used
to extract extradata from any stream, not just attachments.

-noautorotate

Disable automatically rotating video based on file metadata.

5.5 Video Options# TOC

-vframes number (output)

Set the number of video frames to output. This is an obsolete alias for -frames:v, which you
should use instead.

-r[:stream_specifier] fps (input/output,per-stream)

Set frame rate (Hz value, fraction or abbreviation).

As an input option, ignore any timestamps stored in the file and instead generate timestamps
assuming constant frame rate fps. This is not the same as the -framerate option used for some
input formats like image2 or v4l2 (it used to be the same in older versions of FFmpeg). If in doubt
use -framerate instead of the input option -r.

As an output option, duplicate or drop input frames to achieve constant output frame rate fps.

-s[:stream_specifier] size (input/output,per-stream)

Set frame size.

As an input option, this is a shortcut for the video_size private option, recognized by some
demuxers for which the frame size is either not stored in the file or is configurable – e.g. raw video or
video grabbers.

As an output option, this inserts the scale video filter to the end of the corresponding filtergraph.
Please use the scale filter directly to insert it at the beginning or some other place.

The format is ‘wxh’ (default - same as source).

-aspect[:stream_specifier] aspect (output,per-stream)

Set the video display aspect ratio specified by aspect.

aspect can be a floating point number string, or a string of the form num:den, where num and den are
the numerator and denominator of the aspect ratio. For example "4:3", "16:9", "1.3333", and "1.7777"
are valid argument values.

If used together with -vcodec copy, it will affect the aspect ratio stored at container level, but not
the aspect ratio stored in encoded frames, if it exists.

-vn (output)

Disable video recording.

-vcodec codec (output)

Set the video codec. This is an alias for -codec:v.

-pass[:stream_specifier] n (output,per-stream)

Select the pass number (1 or 2). It is used to do two-pass video encoding. The statistics of the video
are recorded in the first pass into a log file (see also the option -passlogfile), and in the second pass
that log file is used to generate the video at the exact requested bitrate. On pass 1, you may just
deactivate audio and set output to null, examples for Windows and Unix:

ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y NUL
ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y /dev/null

-passlogfile[:stream_specifier] prefix (output,per-stream)

Set two-pass log file name prefix to prefix, the default file name prefix is “ffmpeg2pass”. The
complete file name will be PREFIX-N.log, where N is a number specific to the output stream

-vf filtergraph (output)

Create the filtergraph specified by filtergraph and use it to filter the stream.

This is an alias for -filter:v, see the -filter option.

5.6 Advanced Video options# TOC

-pix_fmt[:stream_specifier] format (input/output,per-stream)

Set pixel format. Use -pix_fmts to show all the supported pixel formats. If the selected pixel
format can not be selected, ffmpeg will print a warning and select the best pixel format supported by
the encoder. If pix_fmt is prefixed by a +, ffmpeg will exit with an error if the requested pixel format
can not be selected, and automatic conversions inside filtergraphs are disabled. If pix_fmt is a single
+, ffmpeg selects the same pixel format as the input (or graph output) and automatic conversions are
disabled.

-sws_flags flags (input/output)

Set SwScaler flags.

-vdt n

Discard threshold.

-rc_override[:stream_specifier] override (output,per-stream)

Rate control override for specific intervals, formatted as "int,int,int" list separated with slashes. Two
first values are the beginning and end frame numbers, last one is quantizer to use if positive, or
quality factor if negative.

-ilme

Force interlacing support in encoder (MPEG-2 and MPEG-4 only). Use this option if your input file
is interlaced and you want to keep the interlaced format for minimum losses. The alternative is to
deinterlace the input stream with -deinterlace, but deinterlacing introduces losses.

-psnr

Calculate PSNR of compressed frames.

-vstats

Dump video coding statistics to vstats_HHMMSS.log.

-vstats_file file

Dump video coding statistics to file.

-vstats_version file

Specifies which version of the vstats format to use. Default is 2.

version = 1 :

frame= %5d q= %2.1f PSNR= %6.2f f_size= %6d s_size= %8.0fkB time=
%0.3f br= %7.1fkbits/s avg_br= %7.1fkbits/s

version > 1:

out= %2d st= %2d frame= %5d q= %2.1f PSNR= %6.2f f_size= %6d s_size=
%8.0fkB time= %0.3f br= %7.1fkbits/s avg_br= %7.1fkbits/s

-top[:stream_specifier] n (output,per-stream)

top=1/bottom=0/auto=-1 field first

-dc precision

Intra_dc_precision.

-vtag fourcc/tag (output)

Force video tag/fourcc. This is an alias for -tag:v.

-qphist (global)

Show QP histogram

-vbsf bitstream_filter

Deprecated see -bsf

-force_key_frames[:stream_specifier] time[,time...] (output,per-stream)
-force_key_frames[:stream_specifier] expr:expr (output,per-stream)

Force key frames at the specified timestamps, more precisely at the first frames after each specified
time.

If the argument is prefixed with expr:, the string expr is interpreted like an expression and is
evaluated for each frame. A key frame is forced in case the evaluation is non-zero.

If one of the times is "chapters[delta]", it is expanded into the time of the beginning of all
chapters in the file, shifted by delta, expressed as a time in seconds. This option can be useful to
ensure that a seek point is present at a chapter mark or any other designated place in the output file.

For example, to insert a key frame at 5 minutes, plus key frames 0.1 second before the beginning of
every chapter:

-force_key_frames 0:05:00,chapters-0.1

The expression in expr can contain the following constants:

n

the number of current processed frame, starting from 0

n_forced

the number of forced frames

prev_forced_n

the number of the previous forced frame, it is NAN when no keyframe was forced yet

prev_forced_t

the time of the previous forced frame, it is NAN when no keyframe was forced yet

t

the time of the current processed frame

For example to force a key frame every 5 seconds, you can specify:

-force_key_frames expr:gte(t,n_forced*5)

To force a key frame 5 seconds after the time of the last forced one, starting from second 13:

-force_key_frames expr:if(isnan(prev_forced_t),gte(t,13),gte(t,prev_forced_t+5))

Note that forcing too many keyframes is very harmful for the lookahead algorithms of certain
encoders: using fixed-GOP options or similar would be more efficient.

-copyinkf[:stream_specifier] (output,per-stream)

When doing stream copy, copy also non-key frames found at the beginning.

-init_hw_device type[=name][:device[,key=value...]]

Initialise a new hardware device of type type called name, using the given device parameters. If no
name is specified it will receive a default name of the form "type%d".

The meaning of device and the following arguments depends on the device type:

cuda

device is the number of the CUDA device.

dxva2

device is the number of the Direct3D 9 display adapter.

vaapi

device is either an X11 display name or a DRM render node. If not specified, it will attempt to
open the default X11 display ($DISPLAY) and then the first DRM render node
(/dev/dri/renderD128).

vdpau

device is an X11 display name. If not specified, it will attempt to open the default X11 display
($DISPLAY).

qsv

device selects a value in ‘MFX_IMPL_*’. Allowed values are:

auto
sw
hw
auto_any
hw_any
hw2
hw3
hw4

If not specified, ‘auto_any’ is used. (Note that it may be easier to achieve the desired result
for QSV by creating the platform-appropriate subdevice (‘dxva2’ or ‘vaapi’) and then
deriving a QSV device from that.)

opencl

device selects the platform and device as platform_index.device_index.

The set of devices can also be filtered using the key-value pairs to find only devices matching
particular platform or device strings.

The strings usable as filters are:

platform_profile
platform_version
platform_name
platform_vendor
platform_extensions
device_name
device_vendor
driver_version

device_version
device_profile
device_extensions
device_type

The indices and filters must together uniquely select a device.

Examples:

-init_hw_device opencl:0.1

Choose the second device on the first platform.

-init_hw_device opencl:,device_name=Foo9000

Choose the device with a name containing the string Foo9000.

-init_hw_device opencl:1,device_type=gpu,device_extensions=cl_khr_fp16

Choose the GPU device on the second platform supporting the cl_khr_fp16 extension.

-init_hw_device type[=name]@source

Initialise a new hardware device of type type called name, deriving it from the existing device with
the name source.

-init_hw_device list

List all hardware device types supported in this build of ffmpeg.

-filter_hw_device name

Pass the hardware device called name to all filters in any filter graph. This can be used to set the
device to upload to with the hwupload filter, or the device to map to with the hwmap filter. Other
filters may also make use of this parameter when they require a hardware device. Note that this is
typically only required when the input is not already in hardware frames - when it is, filters will
derive the device they require from the context of the frames they receive as input.

This is a global setting, so all filters will receive the same device.

-hwaccel[:stream_specifier] hwaccel (input,per-stream)

Use hardware acceleration to decode the matching stream(s). The allowed values of hwaccel are:

none

Do not use any hardware acceleration (the default).

auto

Automatically select the hardware acceleration method.

vdpau

Use VDPAU (Video Decode and Presentation API for Unix) hardware acceleration.

dxva2

Use DXVA2 (DirectX Video Acceleration) hardware acceleration.

vaapi

Use VAAPI (Video Acceleration API) hardware acceleration.

qsv

Use the Intel QuickSync Video acceleration for video transcoding.

Unlike most other values, this option does not enable accelerated decoding (that is used
automatically whenever a qsv decoder is selected), but accelerated transcoding, without copying
the frames into the system memory.

For it to work, both the decoder and the encoder must support QSV acceleration and no filters
must be used.

This option has no effect if the selected hwaccel is not available or not supported by the chosen
decoder.

Note that most acceleration methods are intended for playback and will not be faster than software
decoding on modern CPUs. Additionally, ffmpeg will usually need to copy the decoded frames
from the GPU memory into the system memory, resulting in further performance loss. This option is
thus mainly useful for testing.

-hwaccel_device[:stream_specifier] hwaccel_device (input,per-stream)

Select a device to use for hardware acceleration.

This option only makes sense when the -hwaccel option is also specified. It can either refer to an
existing device created with -init_hw_device by name, or it can create a new device as if
‘-init_hw_device’ type:hwaccel_device were called immediately before.

-hwaccels

List all hardware acceleration methods supported in this build of ffmpeg.

5.7 Audio Options# TOC

-aframes number (output)

Set the number of audio frames to output. This is an obsolete alias for -frames:a, which you
should use instead.

-ar[:stream_specifier] freq (input/output,per-stream)

Set the audio sampling frequency. For output streams it is set by default to the frequency of the
corresponding input stream. For input streams this option only makes sense for audio grabbing
devices and raw demuxers and is mapped to the corresponding demuxer options.

-aq q (output)

Set the audio quality (codec-specific, VBR). This is an alias for -q:a.

-ac[:stream_specifier] channels (input/output,per-stream)

Set the number of audio channels. For output streams it is set by default to the number of input audio
channels. For input streams this option only makes sense for audio grabbing devices and raw
demuxers and is mapped to the corresponding demuxer options.

-an (output)

Disable audio recording.

-acodec codec (input/output)

Set the audio codec. This is an alias for -codec:a.

-sample_fmt[:stream_specifier] sample_fmt (output,per-stream)

Set the audio sample format. Use -sample_fmts to get a list of supported sample formats.

-af filtergraph (output)

Create the filtergraph specified by filtergraph and use it to filter the stream.

This is an alias for -filter:a, see the -filter option.

5.8 Advanced Audio options# TOC

-atag fourcc/tag (output)

Force audio tag/fourcc. This is an alias for -tag:a.

-absf bitstream_filter

Deprecated, see -bsf

-guess_layout_max channels (input,per-stream)

If some input channel layout is not known, try to guess only if it corresponds to at most the specified
number of channels. For example, 2 tells to ffmpeg to recognize 1 channel as mono and 2 channels
as stereo but not 6 channels as 5.1. The default is to always try to guess. Use 0 to disable all guessing.

5.9 Subtitle options# TOC

-scodec codec (input/output)

Set the subtitle codec. This is an alias for -codec:s.

-sn (output)

Disable subtitle recording.

-sbsf bitstream_filter

Deprecated, see -bsf

5.10 Advanced Subtitle options# TOC

-fix_sub_duration

Fix subtitles durations. For each subtitle, wait for the next packet in the same stream and adjust the
duration of the first to avoid overlap. This is necessary with some subtitles codecs, especially DVB
subtitles, because the duration in the original packet is only a rough estimate and the end is actually
marked by an empty subtitle frame. Failing to use this option when necessary can result in
exaggerated durations or muxing failures due to non-monotonic timestamps.

Note that this option will delay the output of all data until the next subtitle packet is decoded: it may
increase memory consumption and latency a lot.

-canvas_size size

Set the size of the canvas used to render subtitles.

5.11 Advanced options# TOC

-map
[-]input_file_id[:stream_specifier][?][,sync_file_id[:stream_specifier]] |
[linklabel] (output)

Designate one or more input streams as a source for the output file. Each input stream is identified by
the input file index input_file_id and the input stream index input_stream_id within the input file.
Both indices start at 0. If specified, sync_file_id:stream_specifier sets which input stream is used as a
presentation sync reference.

The first -map option on the command line specifies the source for output stream 0, the second
-map option specifies the source for output stream 1, etc.

A - character before the stream identifier creates a "negative" mapping. It disables matching streams
from already created mappings.

A trailing ? after the stream index will allow the map to be optional: if the map matches no streams
the map will be ignored instead of failing. Note the map will still fail if an invalid input file index is used;
such as if the map refers to a non-existent input.

An alternative [linklabel] form will map outputs from complex filter graphs (see the
-filter_complex option) to the output file. linklabel must correspond to a defined output link
label in the graph.

For example, to map ALL streams from the first input file to output

ffmpeg -i INPUT -map 0 output

For example, if you have two audio streams in the first input file, these streams are identified by "0:0"
and "0:1". You can use -map to select which streams to place in an output file. For example:

ffmpeg -i INPUT -map 0:1 out.wav

will map the input stream in INPUT identified by "0:1" to the (single) output stream in out.wav.

For example, to select the stream with index 2 from input file a.mov (specified by the identifier
"0:2"), and stream with index 6 from input b.mov (specified by the identifier "1:6"), and copy them
to the output file out.mov:

ffmpeg -i a.mov -i b.mov -c copy -map 0:2 -map 1:6 out.mov

To select all video and the third audio stream from an input file:

ffmpeg -i INPUT -map 0:v -map 0:a:2 OUTPUT

To map all the streams except the second audio, use negative mappings

ffmpeg -i INPUT -map 0 -map -0:a:1 OUTPUT

To map the video and audio streams from the first input, and using the trailing ?, ignore the audio
mapping if no audio streams exist in the first input:

ffmpeg -i INPUT -map 0:v -map 0:a? OUTPUT

To pick the English audio stream:

ffmpeg -i INPUT -map 0:m:language:eng OUTPUT

Note that using this option disables the default mappings for this output file.

-ignore_unknown

Ignore input streams with unknown type instead of failing if copying such streams is attempted.

-copy_unknown

Allow input streams with unknown type to be copied instead of failing if copying such streams is
attempted.

-map_channel
[input_file_id.stream_specifier.channel_id|-1][?][:output_file_id.stream_specifier]

Map an audio channel from a given input to an output. If output_file_id.stream_specifier is not set,
the audio channel will be mapped on all the audio streams.

Using "-1" instead of input_file_id.stream_specifier.channel_id will map a muted channel.

A trailing ? will allow the map_channel to be optional: if the map_channel matches no channel the
map_channel will be ignored instead of failing.

For example, assuming INPUT is a stereo audio file, you can switch the two audio channels with the
following command:

ffmpeg -i INPUT -map_channel 0.0.1 -map_channel 0.0.0 OUTPUT

If you want to mute the first channel and keep the second:

ffmpeg -i INPUT -map_channel -1 -map_channel 0.0.1 OUTPUT

The order of the "-map_channel" option specifies the order of the channels in the output stream. The
output channel layout is guessed from the number of channels mapped (mono if one "-map_channel",
stereo if two, etc.). Using "-ac" in combination of "-map_channel" makes the channel gain levels to
be updated if input and output channel layouts don’t match (for instance two "-map_channel" options
and "-ac 6").

You can also extract each channel of an input to specific outputs; the following command extracts
two channels of the INPUT audio stream (file 0, stream 0) to the respective OUTPUT_CH0 and
OUTPUT_CH1 outputs:

ffmpeg -i INPUT -map_channel 0.0.0 OUTPUT_CH0 -map_channel 0.0.1 OUTPUT_CH1

The following example splits the channels of a stereo input into two separate streams, which are put
into the same output file:

ffmpeg -i stereo.wav -map 0:0 -map 0:0 -map_channel 0.0.0:0.0 -map_channel 0.0.1:0.1 -y out.ogg

Note that currently each output stream can only contain channels from a single input stream; you
can’t for example use "-map_channel" to pick multiple input audio channels contained in different
streams (from the same or different files) and merge them into a single output stream. It is therefore
not currently possible, for example, to turn two separate mono streams into a single stereo stream.
However splitting a stereo stream into two single channel mono streams is possible.

If you need this feature, a possible workaround is to use the amerge filter. For example, if you need
to merge a media (here input.mkv) with 2 mono audio streams into one single stereo channel
audio stream (and keep the video stream), you can use the following command:

ffmpeg -i input.mkv -filter_complex "[0:1] [0:2] amerge" -c:a pcm_s16le -c:v copy output.mkv

To map the first two audio channels from the first input, and using the trailing ?, ignore the audio
channel mapping if the first input is mono instead of stereo:

ffmpeg -i INPUT -map_channel 0.0.0 -map_channel 0.0.1? OUTPUT

-map_metadata[:metadata_spec_out] infile[:metadata_spec_in]
(output,per-metadata)

Set metadata information of the next output file from infile. Note that those are file indices
(zero-based), not filenames. Optional metadata_spec_in/out parameters specify, which metadata to
copy. A metadata specifier can have the following forms:

g

global metadata, i.e. metadata that applies to the whole file

s[:stream_spec]

per-stream metadata. stream_spec is a stream specifier as described in the Stream specifiers
chapter. In an input metadata specifier, the first matching stream is copied from. In an output
metadata specifier, all matching streams are copied to.

c:chapter_index

per-chapter metadata. chapter_index is the zero-based chapter index.

p:program_index

per-program metadata. program_index is the zero-based program index.

If metadata specifier is omitted, it defaults to global.

By default, global metadata is copied from the first input file, per-stream and per-chapter metadata is
copied along with streams/chapters. These default mappings are disabled by creating any mapping of
the relevant type. A negative file index can be used to create a dummy mapping that just disables
automatic copying.

For example to copy metadata from the first stream of the input file to global metadata of the output
file:

ffmpeg -i in.ogg -map_metadata 0:s:0 out.mp3

To do the reverse, i.e. copy global metadata to all audio streams:

ffmpeg -i in.mkv -map_metadata:s:a 0:g out.mkv

Note that simple 0 would work as well in this example, since global metadata is assumed by default.

-map_chapters input_file_index (output)

Copy chapters from input file with index input_file_index to the next output file. If no chapter
mapping is specified, then chapters are copied from the first input file with at least one chapter. Use a
negative file index to disable any chapter copying.

-benchmark (global)

Show benchmarking information at the end of an encode. Shows CPU time used and maximum
memory consumption. Maximum memory consumption is not supported on all systems, it will
usually display as 0 if not supported.

-benchmark_all (global)

Show benchmarking information during the encode. Shows CPU time used in various steps
(audio/video encode/decode).

-timelimit duration (global)

Exit after ffmpeg has been running for duration seconds.

-dump (global)

Dump each input packet to stderr.

-hex (global)

When dumping packets, also dump the payload.

-re (input)

Read input at native frame rate. Mainly used to simulate a grab device, or live input stream (e.g.
when reading from a file). Should not be used with actual grab devices or live input streams (where it
can cause packet loss). By default ffmpeg attempts to read the input(s) as fast as possible. This
option will slow down the reading of the input(s) to the native frame rate of the input(s). It is useful
for real-time output (e.g. live streaming).

-loop_input

Loop over the input stream. Currently it works only for image streams. This option is used for
automatic FFserver testing. This option is deprecated, use -loop 1.

-loop_output number_of_times

Repeatedly loop output for formats that support looping such as animated GIF (0 will loop the output
infinitely). This option is deprecated, use -loop.

-vsync parameter

Video sync method. For compatibility reasons old values can be specified as numbers. Newly added
values will have to be specified as strings always.

0, passthrough

Each frame is passed with its timestamp from the demuxer to the muxer.

1, cfr

Frames will be duplicated and dropped to achieve exactly the requested constant frame rate.

2, vfr

Frames are passed through with their timestamp or dropped so as to prevent 2 frames from
having the same timestamp.

drop

As passthrough but destroys all timestamps, making the muxer generate fresh timestamps based
on frame-rate.

-1, auto

Chooses between 1 and 2 depending on muxer capabilities. This is the default method.

Note that the timestamps may be further modified by the muxer, after this. For example, in the case
that the format option avoid_negative_ts is enabled.

With -map you can select from which stream the timestamps should be taken. You can leave either
video or audio unchanged and sync the remaining stream(s) to the unchanged one.

-frame_drop_threshold parameter

Frame drop threshold, which specifies how much behind video frames can be before they are
dropped. In frame rate units, so 1.0 is one frame. The default is -1.1. One possible usecase is to avoid
framedrops in case of noisy timestamps or to increase frame drop precision in case of exact
timestamps.

-async samples_per_second

Audio sync method. "Stretches/squeezes" the audio stream to match the timestamps, the parameter is
the maximum samples per second by which the audio is changed. -async 1 is a special case where
only the start of the audio stream is corrected without any later correction.

Note that the timestamps may be further modified by the muxer, after this. For example, in the case
that the format option avoid_negative_ts is enabled.

This option has been deprecated. Use the aresample audio filter instead.

-copyts

Do not process input timestamps, but keep their values without trying to sanitize them. In particular,
do not remove the initial start time offset value.

Note that, depending on the vsync option or on specific muxer processing (e.g. in case the format
option avoid_negative_ts is enabled) the output timestamps may mismatch with the input
timestamps even when this option is selected.

-start_at_zero

When used with copyts, shift input timestamps so they start at zero.

This means that using e.g. -ss 50 will make output timestamps start at 50 seconds, regardless of
what timestamp the input file started at.

-copytb mode

Specify how to set the encoder timebase when stream copying. mode is an integer numeric value, and
can assume one of the following values:

1

Use the demuxer timebase.

The time base is copied to the output encoder from the corresponding input demuxer. This is
sometimes required to avoid non monotonically increasing timestamps when copying video
streams with variable frame rate.

0

Use the decoder timebase.

The time base is copied to the output encoder from the corresponding input decoder.

-1

Try to make the choice automatically, in order to generate a sane output.

Default value is -1.

-enc_time_base[:stream_specifier] timebase (output,per-stream)

Set the encoder timebase. timebase is a floating point number, and can assume one of the following
values:

0

Assign a default value according to the media type.

For video - use 1/framerate, for audio - use 1/samplerate.

-1

Use the input stream timebase when possible.

If an input stream is not available, the default timebase will be used.

>0

Use the provided number as the timebase.

This field can be provided as a ratio of two integers (e.g. 1:24, 1:48000) or as a floating point
number (e.g. 0.04166, 2.0833e-5)

Default value is 0.

-bitexact (input/output)

Enable bitexact mode for (de)muxer and (de/en)coder

-shortest (output)

Finish encoding when the shortest input stream ends.

-dts_delta_threshold

Timestamp discontinuity delta threshold.

-muxdelay seconds (input)

Set the maximum demux-decode delay.

-muxpreload seconds (input)

Set the initial demux-decode delay.

-streamid output-stream-index:new-value (output)

Assign a new stream-id value to an output stream. This option should be specified prior to the output
filename to which it applies. For the situation where multiple output files exist, a streamid may be
reassigned to a different value.

For example, to set the stream 0 PID to 33 and the stream 1 PID to 36 for an output mpegts file:

ffmpeg -i inurl -streamid 0:33 -streamid 1:36 out.ts

-bsf[:stream_specifier] bitstream_filters (output,per-stream)

Set bitstream filters for matching streams. bitstream_filters is a comma-separated list of bitstream
filters. Use the -bsfs option to get the list of bitstream filters.

ffmpeg -i h264.mp4 -c:v copy -bsf:v h264_mp4toannexb -an out.h264

ffmpeg -i file.mov -an -vn -bsf:s mov2textsub -c:s copy -f rawvideo sub.txt

-tag[:stream_specifier] codec_tag (input/output,per-stream)

Force a tag/fourcc for matching streams.

-timecode hh:mm:ssSEPff

Specify Timecode for writing. SEP is ’:’ for non drop timecode and ’;’ (or ’.’) for drop.

ffmpeg -i input.mpg -timecode 01:02:03.04 -r 30000/1001 -s ntsc output.mpg

-filter_complex filtergraph (global)

Define a complex filtergraph, i.e. one with arbitrary number of inputs and/or outputs. For simple
graphs – those with one input and one output of the same type – see the -filter options.
filtergraph is a description of the filtergraph, as described in the “Filtergraph syntax” section of the
ffmpeg-filters manual.

Input link labels must refer to input streams using the [file_index:stream_specifier]
syntax (i.e. the same as -map uses). If stream_specifier matches multiple streams, the first one will
be used. An unlabeled input will be connected to the first unused input stream of the matching type.

Output link labels are referred to with -map. Unlabeled outputs are added to the first output file.

Note that with this option it is possible to use only lavfi sources without normal input files.

For example, to overlay an image over video

ffmpeg -i video.mkv -i image.png -filter_complex ’[0:v][1:v]overlay[out]’ -map
’[out]’ out.mkv

Here [0:v] refers to the first video stream in the first input file, which is linked to the first (main)
input of the overlay filter. Similarly the first video stream in the second input is linked to the second
(overlay) input of overlay.

Assuming there is only one video stream in each input file, we can omit input labels, so the above is
equivalent to

ffmpeg -i video.mkv -i image.png -filter_complex ’overlay[out]’ -map
’[out]’ out.mkv

Furthermore we can omit the output label and the single output from the filter graph will be added to
the output file automatically, so we can simply write

ffmpeg -i video.mkv -i image.png -filter_complex ’overlay’ out.mkv

To generate 5 seconds of pure red video using lavfi color source:

ffmpeg -filter_complex ’color=c=red’ -t 5 out.mkv

-filter_complex_threads nb_threads (global)

Defines how many threads are used to process a filter_complex graph. Similar to filter_threads but
used for -filter_complex graphs only. The default is the number of available CPUs.

-lavfi filtergraph (global)

Define a complex filtergraph, i.e. one with arbitrary number of inputs and/or outputs. Equivalent to
-filter_complex.

-filter_complex_script filename (global)

This option is similar to -filter_complex, the only difference is that its argument is the name of
the file from which a complex filtergraph description is to be read.

-accurate_seek (input)

This option enables or disables accurate seeking in input files with the -ss option. It is enabled by
default, so seeking is accurate when transcoding. Use -noaccurate_seek to disable it, which
may be useful e.g. when copying some streams and transcoding the others.

-seek_timestamp (input)

This option enables or disables seeking by timestamp in input files with the -ss option. It is disabled
by default. If enabled, the argument to the -ss option is considered an actual timestamp, and is not
offset by the start time of the file. This matters only for files which do not start from timestamp 0,
such as transport streams.

-thread_queue_size size (input)

This option sets the maximum number of queued packets when reading from the file or device. With
low latency / high rate live streams, packets may be discarded if they are not read in a timely manner;
raising this value can avoid it.

-override_ffserver (global)

Overrides the input specifications from ffserver. Using this option you can map any input stream
to ffserver and control many aspects of the encoding from ffmpeg. Without this option
ffmpeg will transmit to ffserver what is requested by ffserver.

The option is intended for cases where features are needed that cannot be specified to ffserver but
can be to ffmpeg.

-sdp_file file (global)

Print sdp information for an output stream to file. This allows dumping sdp information when at least
one output isn’t an rtp stream. (Requires at least one of the output formats to be rtp).

-discard (input)

Allows discarding specific streams or frames of streams at the demuxer. Not all demuxers support
this.

none

Discard no frame.

default

Default, which discards no frames.

noref

Discard all non-reference frames.

bidir

Discard all bidirectional frames.

nokey

Discard all frames excepts keyframes.

all

Discard all frames.

-abort_on flags (global)

Stop and abort on various conditions. The following flags are available:

empty_output

No packets were passed to the muxer, the output is empty.

-xerror (global)

Stop and exit on error

-max_muxing_queue_size packets (output,per-stream)

When transcoding audio and/or video streams, ffmpeg will not begin writing into the output until it
has one packet for each such stream. While waiting for that to happen, packets for other streams are
buffered. This option sets the size of this buffer, in packets, for the matching output stream.

The default value of this option should be high enough for most uses, so only touch this option if you
are sure that you need it.

As a special exception, you can use a bitmap subtitle stream as input: it will be converted into a video with
the same size as the largest video in the file, or 720x576 if no video is present. Note that this is an
experimental and temporary solution. It will be removed once libavfilter has proper support for subtitles.

For example, to hardcode subtitles on top of a DVB-T recording stored in MPEG-TS format, delaying the
subtitles by 1 second:

ffmpeg -i input.ts -filter_complex \
 ’[#0x2ef] setpts=PTS+1/TB [sub] ; [#0x2d0] [sub] overlay’ \
 -sn -map ’#0x2dc’ output.mkv

(0x2d0, 0x2dc and 0x2ef are the MPEG-TS PIDs of respectively the video, audio and subtitles streams;
0:0, 0:3 and 0:7 would have worked too)

5.12 Preset files# TOC

A preset file contains a sequence of option=value pairs, one for each line, specifying a sequence of options
which would be awkward to specify on the command line. Lines starting with the hash (’#’) character are
ignored and are used to provide comments. Check the presets directory in the FFmpeg source tree for
examples.

There are two types of preset files: ffpreset and avpreset files.

5.12.1 ffpreset files# TOC

ffpreset files are specified with the vpre, apre, spre, and fpre options. The fpre option takes the
filename of the preset instead of a preset name as input and can be used for any kind of codec. For the
vpre, apre, and spre options, the options specified in a preset file are applied to the currently selected
codec of the same type as the preset option.

The argument passed to the vpre, apre, and spre preset options identifies the preset file to use
according to the following rules:

First ffmpeg searches for a file named arg.ffpreset in the directories $FFMPEG_DATADIR (if set), and
$HOME/.ffmpeg, and in the datadir defined at configuration time (usually PREFIX/share/ffmpeg)
or in a ffpresets folder along the executable on win32, in that order. For example, if the argument is
libvpx-1080p, it will search for the file libvpx-1080p.ffpreset.

If no such file is found, then ffmpeg will search for a file named codec_name-arg.ffpreset in the
above-mentioned directories, where codec_name is the name of the codec to which the preset file options
will be applied. For example, if you select the video codec with -vcodec libvpx and use -vpre
1080p, then it will search for the file libvpx-1080p.ffpreset.

5.12.2 avpreset files# TOC

avpreset files are specified with the pre option. They work similar to ffpreset files, but they only allow
encoder- specific options. Therefore, an option=value pair specifying an encoder cannot be used.

When the pre option is specified, ffmpeg will look for files with the suffix .avpreset in the directories
$AVCONV_DATADIR (if set), and $HOME/.avconv, and in the datadir defined at configuration time
(usually PREFIX/share/ffmpeg), in that order.

First ffmpeg searches for a file named codec_name-arg.avpreset in the above-mentioned directories,
where codec_name is the name of the codec to which the preset file options will be applied. For example,
if you select the video codec with -vcodec libvpx and use -pre 1080p, then it will search for the
file libvpx-1080p.avpreset.

If no such file is found, then ffmpeg will search for a file named arg.avpreset in the same directories.

6 Examples# TOC

6.1 Video and Audio grabbing# TOC

If you specify the input format and device then ffmpeg can grab video and audio directly.

ffmpeg -f oss -i /dev/dsp -f video4linux2 -i /dev/video0 /tmp/out.mpg

Or with an ALSA audio source (mono input, card id 1) instead of OSS:

ffmpeg -f alsa -ac 1 -i hw:1 -f video4linux2 -i /dev/video0 /tmp/out.mpg

Note that you must activate the right video source and channel before launching ffmpeg with any TV
viewer such as xawtv by Gerd Knorr. You also have to set the audio recording levels correctly with a
standard mixer.

http://linux.bytesex.org/xawtv/

6.2 X11 grabbing# TOC

Grab the X11 display with ffmpeg via

ffmpeg -f x11grab -video_size cif -framerate 25 -i :0.0 /tmp/out.mpg

0.0 is display.screen number of your X11 server, same as the DISPLAY environment variable.

ffmpeg -f x11grab -video_size cif -framerate 25 -i :0.0+10,20 /tmp/out.mpg

0.0 is display.screen number of your X11 server, same as the DISPLAY environment variable. 10 is the
x-offset and 20 the y-offset for the grabbing.

6.3 Video and Audio file format conversion# TOC

Any supported file format and protocol can serve as input to ffmpeg:

Examples:

You can use YUV files as input:

ffmpeg -i /tmp/test%d.Y /tmp/out.mpg

It will use the files:

/tmp/test0.Y, /tmp/test0.U, /tmp/test0.V,
/tmp/test1.Y, /tmp/test1.U, /tmp/test1.V, etc...

The Y files use twice the resolution of the U and V files. They are raw files, without header. They can
be generated by all decent video decoders. You must specify the size of the image with the -s option
if ffmpeg cannot guess it.

You can input from a raw YUV420P file:

ffmpeg -i /tmp/test.yuv /tmp/out.avi

test.yuv is a file containing raw YUV planar data. Each frame is composed of the Y plane followed
by the U and V planes at half vertical and horizontal resolution.

You can output to a raw YUV420P file:

ffmpeg -i mydivx.avi hugefile.yuv

You can set several input files and output files:

ffmpeg -i /tmp/a.wav -s 640x480 -i /tmp/a.yuv /tmp/a.mpg

Converts the audio file a.wav and the raw YUV video file a.yuv to MPEG file a.mpg.

You can also do audio and video conversions at the same time:

ffmpeg -i /tmp/a.wav -ar 22050 /tmp/a.mp2

Converts a.wav to MPEG audio at 22050 Hz sample rate.

You can encode to several formats at the same time and define a mapping from input stream to output
streams:

ffmpeg -i /tmp/a.wav -map 0:a -b:a 64k /tmp/a.mp2 -map 0:a -b:a 128k /tmp/b.mp2

Converts a.wav to a.mp2 at 64 kbits and to b.mp2 at 128 kbits. ’-map file:index’ specifies which
input stream is used for each output stream, in the order of the definition of output streams.

You can transcode decrypted VOBs:

ffmpeg -i snatch_1.vob -f avi -c:v mpeg4 -b:v 800k -g 300 -bf 2 -c:a libmp3lame -b:a 128k snatch.avi

This is a typical DVD ripping example; the input is a VOB file, the output an AVI file with MPEG-4
video and MP3 audio. Note that in this command we use B-frames so the MPEG-4 stream is DivX5
compatible, and GOP size is 300 which means one intra frame every 10 seconds for 29.97fps input
video. Furthermore, the audio stream is MP3-encoded so you need to enable LAME support by
passing --enable-libmp3lame to configure. The mapping is particularly useful for DVD
transcoding to get the desired audio language.

NOTE: To see the supported input formats, use ffmpeg -demuxers.

You can extract images from a video, or create a video from many images:

For extracting images from a video:

ffmpeg -i foo.avi -r 1 -s WxH -f image2 foo-%03d.jpeg

This will extract one video frame per second from the video and will output them in files named
foo-001.jpeg, foo-002.jpeg, etc. Images will be rescaled to fit the new WxH values.

If you want to extract just a limited number of frames, you can use the above command in
combination with the -frames:v or -t option, or in combination with -ss to start extracting from a
certain point in time.

For creating a video from many images:

ffmpeg -f image2 -framerate 12 -i foo-%03d.jpeg -s WxH foo.avi

The syntax foo-%03d.jpeg specifies to use a decimal number composed of three digits padded
with zeroes to express the sequence number. It is the same syntax supported by the C printf function,
but only formats accepting a normal integer are suitable.

When importing an image sequence, -i also supports expanding shell-like wildcard patterns
(globbing) internally, by selecting the image2-specific -pattern_type glob option.

For example, for creating a video from filenames matching the glob pattern foo-*.jpeg:

ffmpeg -f image2 -pattern_type glob -framerate 12 -i ’foo-*.jpeg’ -s WxH foo.avi

You can put many streams of the same type in the output:

ffmpeg -i test1.avi -i test2.avi -map 1:1 -map 1:0 -map 0:1 -map 0:0 -c copy -y test12.nut

The resulting output file test12.nut will contain the first four streams from the input files in
reverse order.

To force CBR video output:

ffmpeg -i myfile.avi -b 4000k -minrate 4000k -maxrate 4000k -bufsize 1835k out.m2v

The four options lmin, lmax, mblmin and mblmax use ’lambda’ units, but you may use the
QP2LAMBDA constant to easily convert from ’q’ units:

ffmpeg -i src.ext -lmax 21*QP2LAMBDA dst.ext

7 Syntax# TOC

This section documents the syntax and formats employed by the FFmpeg libraries and tools.

7.1 Quoting and escaping# TOC

FFmpeg adopts the following quoting and escaping mechanism, unless explicitly specified. The following
rules are applied:

‘’’ and ‘\’ are special characters (respectively used for quoting and escaping). In addition to them,
there might be other special characters depending on the specific syntax where the escaping and
quoting are employed.
A special character is escaped by prefixing it with a ‘\’.
All characters enclosed between ‘’’’ are included literally in the parsed string. The quote character
‘’’ itself cannot be quoted, so you may need to close the quote and escape it.
Leading and trailing whitespaces, unless escaped or quoted, are removed from the parsed string.

Note that you may need to add a second level of escaping when using the command line or a script, which
depends on the syntax of the adopted shell language.

The function av_get_token defined in libavutil/avstring.h can be used to parse a token
quoted or escaped according to the rules defined above.

The tool tools/ffescape in the FFmpeg source tree can be used to automatically quote or escape a
string in a script.

7.1.1 Examples# TOC

Escape the string Crime d’Amour containing the ’ special character:

Crime d\’Amour

The string above contains a quote, so the ’ needs to be escaped when quoting it:

’Crime d’\’’Amour’

Include leading or trailing whitespaces using quoting:

’ this string starts and ends with whitespaces ’

Escaping and quoting can be mixed together:

’ The string ’\’string\’’ is a string ’

To include a literal ‘\’ you can use either escaping or quoting:

’c:\foo’ can be written as c:\\foo

7.2 Date# TOC

The accepted syntax is:

[(YYYY-MM-DD|YYYYMMDD)[T|t|]]((HH:MM:SS[.m...]]])|(HHMMSS[.m...]]]))[Z]
now

If the value is "now" it takes the current time.

Time is local time unless Z is appended, in which case it is interpreted as UTC. If the year-month-day part
is not specified it takes the current year-month-day.

7.3 Time duration# TOC

There are two accepted syntaxes for expressing time duration.

[-][HH:]MM:SS[.m...]

HH expresses the number of hours, MM the number of minutes for a maximum of 2 digits, and SS the
number of seconds for a maximum of 2 digits. The m at the end expresses decimal value for SS.

or

[-]S+[.m...]

S expresses the number of seconds, with the optional decimal part m.

In both expressions, the optional ‘-’ indicates negative duration.

7.3.1 Examples# TOC

The following examples are all valid time duration:

‘55’

55 seconds

‘12:03:45’

12 hours, 03 minutes and 45 seconds

‘23.189’

23.189 seconds

7.4 Video size# TOC

Specify the size of the sourced video, it may be a string of the form widthxheight, or the name of a size
abbreviation.

The following abbreviations are recognized:

‘ntsc’

720x480

‘pal’

720x576

‘qntsc’

352x240

‘qpal’

352x288

‘sntsc’

640x480

‘spal’

768x576

‘film’

352x240

‘ntsc-film’

352x240

‘sqcif’

128x96

‘qcif’

176x144

‘cif’

352x288

‘4cif’

704x576

‘16cif’

1408x1152

‘qqvga’

160x120

‘qvga’

320x240

‘vga’

640x480

‘svga’

800x600

‘xga’

1024x768

‘uxga’

1600x1200

‘qxga’

2048x1536

‘sxga’

1280x1024

‘qsxga’

2560x2048

‘hsxga’

5120x4096

‘wvga’

852x480

‘wxga’

1366x768

‘wsxga’

1600x1024

‘wuxga’

1920x1200

‘woxga’

2560x1600

‘wqsxga’

3200x2048

‘wquxga’

3840x2400

‘whsxga’

6400x4096

‘whuxga’

7680x4800

‘cga’

320x200

‘ega’

640x350

‘hd480’

852x480

‘hd720’

1280x720

‘hd1080’

1920x1080

‘2k’

2048x1080

‘2kflat’

1998x1080

‘2kscope’

2048x858

‘4k’

4096x2160

‘4kflat’

3996x2160

‘4kscope’

4096x1716

‘nhd’

640x360

‘hqvga’

240x160

‘wqvga’

400x240

‘fwqvga’

432x240

‘hvga’

480x320

‘qhd’

960x540

‘2kdci’

2048x1080

‘4kdci’

4096x2160

‘uhd2160’

3840x2160

‘uhd4320’

7680x4320

7.5 Video rate# TOC

Specify the frame rate of a video, expressed as the number of frames generated per second. It has to be a
string in the format frame_rate_num/frame_rate_den, an integer number, a float number or a valid video
frame rate abbreviation.

The following abbreviations are recognized:

‘ntsc’

30000/1001

‘pal’

25/1

‘qntsc’

30000/1001

‘qpal’

25/1

‘sntsc’

30000/1001

‘spal’

25/1

‘film’

24/1

‘ntsc-film’

24000/1001

7.6 Ratio# TOC

A ratio can be expressed as an expression, or in the form numerator:denominator.

Note that a ratio with infinite (1/0) or negative value is considered valid, so you should check on the
returned value if you want to exclude those values.

The undefined value can be expressed using the "0:0" string.

7.7 Color# TOC

It can be the name of a color as defined below (case insensitive match) or a [0x|#]RRGGBB[AA]
sequence, possibly followed by @ and a string representing the alpha component.

The alpha component may be a string composed by "0x" followed by an hexadecimal number or a decimal
number between 0.0 and 1.0, which represents the opacity value (‘0x00’ or ‘0.0’ means completely
transparent, ‘0xff’ or ‘1.0’ completely opaque). If the alpha component is not specified then ‘0xff’ is
assumed.

The string ‘random’ will result in a random color.

The following names of colors are recognized:

‘AliceBlue’

0xF0F8FF

‘AntiqueWhite’

0xFAEBD7

‘Aqua’

0x00FFFF

‘Aquamarine’

0x7FFFD4

‘Azure’

0xF0FFFF

‘Beige’

0xF5F5DC

‘Bisque’

0xFFE4C4

‘Black’

0x000000

‘BlanchedAlmond’

0xFFEBCD

‘Blue’

0x0000FF

‘BlueViolet’

0x8A2BE2

‘Brown’

0xA52A2A

‘BurlyWood’

0xDEB887

‘CadetBlue’

0x5F9EA0

‘Chartreuse’

0x7FFF00

‘Chocolate’

0xD2691E

‘Coral’

0xFF7F50

‘CornflowerBlue’

0x6495ED

‘Cornsilk’

0xFFF8DC

‘Crimson’

0xDC143C

‘Cyan’

0x00FFFF

‘DarkBlue’

0x00008B

‘DarkCyan’

0x008B8B

‘DarkGoldenRod’

0xB8860B

‘DarkGray’

0xA9A9A9

‘DarkGreen’

0x006400

‘DarkKhaki’

0xBDB76B

‘DarkMagenta’

0x8B008B

‘DarkOliveGreen’

0x556B2F

‘Darkorange’

0xFF8C00

‘DarkOrchid’

0x9932CC

‘DarkRed’

0x8B0000

‘DarkSalmon’

0xE9967A

‘DarkSeaGreen’

0x8FBC8F

‘DarkSlateBlue’

0x483D8B

‘DarkSlateGray’

0x2F4F4F

‘DarkTurquoise’

0x00CED1

‘DarkViolet’

0x9400D3

‘DeepPink’

0xFF1493

‘DeepSkyBlue’

0x00BFFF

‘DimGray’

0x696969

‘DodgerBlue’

0x1E90FF

‘FireBrick’

0xB22222

‘FloralWhite’

0xFFFAF0

‘ForestGreen’

0x228B22

‘Fuchsia’

0xFF00FF

‘Gainsboro’

0xDCDCDC

‘GhostWhite’

0xF8F8FF

‘Gold’

0xFFD700

‘GoldenRod’

0xDAA520

‘Gray’

0x808080

‘Green’

0x008000

‘GreenYellow’

0xADFF2F

‘HoneyDew’

0xF0FFF0

‘HotPink’

0xFF69B4

‘IndianRed’

0xCD5C5C

‘Indigo’

0x4B0082

‘Ivory’

0xFFFFF0

‘Khaki’

0xF0E68C

‘Lavender’

0xE6E6FA

‘LavenderBlush’

0xFFF0F5

‘LawnGreen’

0x7CFC00

‘LemonChiffon’

0xFFFACD

‘LightBlue’

0xADD8E6

‘LightCoral’

0xF08080

‘LightCyan’

0xE0FFFF

‘LightGoldenRodYellow’

0xFAFAD2

‘LightGreen’

0x90EE90

‘LightGrey’

0xD3D3D3

‘LightPink’

0xFFB6C1

‘LightSalmon’

0xFFA07A

‘LightSeaGreen’

0x20B2AA

‘LightSkyBlue’

0x87CEFA

‘LightSlateGray’

0x778899

‘LightSteelBlue’

0xB0C4DE

‘LightYellow’

0xFFFFE0

‘Lime’

0x00FF00

‘LimeGreen’

0x32CD32

‘Linen’

0xFAF0E6

‘Magenta’

0xFF00FF

‘Maroon’

0x800000

‘MediumAquaMarine’

0x66CDAA

‘MediumBlue’

0x0000CD

‘MediumOrchid’

0xBA55D3

‘MediumPurple’

0x9370D8

‘MediumSeaGreen’

0x3CB371

‘MediumSlateBlue’

0x7B68EE

‘MediumSpringGreen’

0x00FA9A

‘MediumTurquoise’

0x48D1CC

‘MediumVioletRed’

0xC71585

‘MidnightBlue’

0x191970

‘MintCream’

0xF5FFFA

‘MistyRose’

0xFFE4E1

‘Moccasin’

0xFFE4B5

‘NavajoWhite’

0xFFDEAD

‘Navy’

0x000080

‘OldLace’

0xFDF5E6

‘Olive’

0x808000

‘OliveDrab’

0x6B8E23

‘Orange’

0xFFA500

‘OrangeRed’

0xFF4500

‘Orchid’

0xDA70D6

‘PaleGoldenRod’

0xEEE8AA

‘PaleGreen’

0x98FB98

‘PaleTurquoise’

0xAFEEEE

‘PaleVioletRed’

0xD87093

‘PapayaWhip’

0xFFEFD5

‘PeachPuff’

0xFFDAB9

‘Peru’

0xCD853F

‘Pink’

0xFFC0CB

‘Plum’

0xDDA0DD

‘PowderBlue’

0xB0E0E6

‘Purple’

0x800080

‘Red’

0xFF0000

‘RosyBrown’

0xBC8F8F

‘RoyalBlue’

0x4169E1

‘SaddleBrown’

0x8B4513

‘Salmon’

0xFA8072

‘SandyBrown’

0xF4A460

‘SeaGreen’

0x2E8B57

‘SeaShell’

0xFFF5EE

‘Sienna’

0xA0522D

‘Silver’

0xC0C0C0

‘SkyBlue’

0x87CEEB

‘SlateBlue’

0x6A5ACD

‘SlateGray’

0x708090

‘Snow’

0xFFFAFA

‘SpringGreen’

0x00FF7F

‘SteelBlue’

0x4682B4

‘Tan’

0xD2B48C

‘Teal’

0x008080

‘Thistle’

0xD8BFD8

‘Tomato’

0xFF6347

‘Turquoise’

0x40E0D0

‘Violet’

0xEE82EE

‘Wheat’

0xF5DEB3

‘White’

0xFFFFFF

‘WhiteSmoke’

0xF5F5F5

‘Yellow’

0xFFFF00

‘YellowGreen’

0x9ACD32

7.8 Channel Layout# TOC

A channel layout specifies the spatial disposition of the channels in a multi-channel audio stream. To
specify a channel layout, FFmpeg makes use of a special syntax.

Individual channels are identified by an id, as given by the table below:

‘FL’

front left

‘FR’

front right

‘FC’

front center

‘LFE’

low frequency

‘BL’

back left

‘BR’

back right

‘FLC’

front left-of-center

‘FRC’

front right-of-center

‘BC’

back center

‘SL’

side left

‘SR’

side right

‘TC’

top center

‘TFL’

top front left

‘TFC’

top front center

‘TFR’

top front right

‘TBL’

top back left

‘TBC’

top back center

‘TBR’

top back right

‘DL’

downmix left

‘DR’

downmix right

‘WL’

wide left

‘WR’

wide right

‘SDL’

surround direct left

‘SDR’

surround direct right

‘LFE2’

low frequency 2

Standard channel layout compositions can be specified by using the following identifiers:

‘mono’

FC

‘stereo’

FL+FR

‘2.1’

FL+FR+LFE

‘3.0’

FL+FR+FC

‘3.0(back)’

FL+FR+BC

‘4.0’

FL+FR+FC+BC

‘quad’

FL+FR+BL+BR

‘quad(side)’

FL+FR+SL+SR

‘3.1’

FL+FR+FC+LFE

‘5.0’

FL+FR+FC+BL+BR

‘5.0(side)’

FL+FR+FC+SL+SR

‘4.1’

FL+FR+FC+LFE+BC

‘5.1’

FL+FR+FC+LFE+BL+BR

‘5.1(side)’

FL+FR+FC+LFE+SL+SR

‘6.0’

FL+FR+FC+BC+SL+SR

‘6.0(front)’

FL+FR+FLC+FRC+SL+SR

‘hexagonal’

FL+FR+FC+BL+BR+BC

‘6.1’

FL+FR+FC+LFE+BC+SL+SR

‘6.1’

FL+FR+FC+LFE+BL+BR+BC

‘6.1(front)’

FL+FR+LFE+FLC+FRC+SL+SR

‘7.0’

FL+FR+FC+BL+BR+SL+SR

‘7.0(front)’

FL+FR+FC+FLC+FRC+SL+SR

‘7.1’

FL+FR+FC+LFE+BL+BR+SL+SR

‘7.1(wide)’

FL+FR+FC+LFE+BL+BR+FLC+FRC

‘7.1(wide-side)’

FL+FR+FC+LFE+FLC+FRC+SL+SR

‘octagonal’

FL+FR+FC+BL+BR+BC+SL+SR

‘downmix’

DL+DR

A custom channel layout can be specified as a sequence of terms, separated by ’+’ or ’|’. Each term can be:

the name of a standard channel layout (e.g. ‘mono’, ‘stereo’, ‘4.0’, ‘quad’, ‘5.0’, etc.)
the name of a single channel (e.g. ‘FL’, ‘FR’, ‘FC’, ‘LFE’, etc.)
a number of channels, in decimal, followed by ’c’, yielding the default channel layout for that number
of channels (see the function av_get_default_channel_layout). Note that not all channel
counts have a default layout.
a number of channels, in decimal, followed by ’C’, yielding an unknown channel layout with the
specified number of channels. Note that not all channel layout specification strings support unknown
channel layouts.
a channel layout mask, in hexadecimal starting with "0x" (see the AV_CH_* macros in
libavutil/channel_layout.h.

Before libavutil version 53 the trailing character "c" to specify a number of channels was optional, but
now it is required, while a channel layout mask can also be specified as a decimal number (if and only if
not followed by "c" or "C").

See also the function av_get_channel_layout defined in libavutil/channel_layout.h.

8 Expression Evaluation# TOC

When evaluating an arithmetic expression, FFmpeg uses an internal formula evaluator, implemented
through the libavutil/eval.h interface.

An expression may contain unary, binary operators, constants, and functions.

Two expressions expr1 and expr2 can be combined to form another expression "expr1;expr2". expr1 and
expr2 are evaluated in turn, and the new expression evaluates to the value of expr2.

The following binary operators are available: +, -, *, /, ^.

The following unary operators are available: +, -.

The following functions are available:

abs(x)

Compute absolute value of x.

acos(x)

Compute arccosine of x.

asin(x)

Compute arcsine of x.

atan(x)

Compute arctangent of x.

atan2(x, y)

Compute principal value of the arc tangent of y/x.

between(x, min, max)

Return 1 if x is greater than or equal to min and lesser than or equal to max, 0 otherwise.

bitand(x, y)
bitor(x, y)

Compute bitwise and/or operation on x and y.

The results of the evaluation of x and y are converted to integers before executing the bitwise
operation.

Note that both the conversion to integer and the conversion back to floating point can lose precision.
Beware of unexpected results for large numbers (usually 2^53 and larger).

ceil(expr)

Round the value of expression expr upwards to the nearest integer. For example, "ceil(1.5)" is "2.0".

clip(x, min, max)

Return the value of x clipped between min and max.

cos(x)

Compute cosine of x.

cosh(x)

Compute hyperbolic cosine of x.

eq(x, y)

Return 1 if x and y are equivalent, 0 otherwise.

exp(x)

Compute exponential of x (with base e, the Euler’s number).

floor(expr)

Round the value of expression expr downwards to the nearest integer. For example, "floor(-1.5)" is
"-2.0".

gauss(x)

Compute Gauss function of x, corresponding to exp(-x*x/2) / sqrt(2*PI).

gcd(x, y)

Return the greatest common divisor of x and y. If both x and y are 0 or either or both are less than
zero then behavior is undefined.

gt(x, y)

Return 1 if x is greater than y, 0 otherwise.

gte(x, y)

Return 1 if x is greater than or equal to y, 0 otherwise.

hypot(x, y)

This function is similar to the C function with the same name; it returns "sqrt(x*x + y*y)", the length
of the hypotenuse of a right triangle with sides of length x and y, or the distance of the point (x, y)
from the origin.

if(x, y)

Evaluate x, and if the result is non-zero return the result of the evaluation of y, return 0 otherwise.

if(x, y, z)

Evaluate x, and if the result is non-zero return the evaluation result of y, otherwise the evaluation
result of z.

ifnot(x, y)

Evaluate x, and if the result is zero return the result of the evaluation of y, return 0 otherwise.

ifnot(x, y, z)

Evaluate x, and if the result is zero return the evaluation result of y, otherwise the evaluation result of
z.

isinf(x)

Return 1.0 if x is +/-INFINITY, 0.0 otherwise.

isnan(x)

Return 1.0 if x is NAN, 0.0 otherwise.

ld(var)

Load the value of the internal variable with number var, which was previously stored with st(var,
expr). The function returns the loaded value.

lerp(x, y, z)

Return linear interpolation between x and y by amount of z.

log(x)

Compute natural logarithm of x.

lt(x, y)

Return 1 if x is lesser than y, 0 otherwise.

lte(x, y)

Return 1 if x is lesser than or equal to y, 0 otherwise.

max(x, y)

Return the maximum between x and y.

min(x, y)

Return the minimum between x and y.

mod(x, y)

Compute the remainder of division of x by y.

not(expr)

Return 1.0 if expr is zero, 0.0 otherwise.

pow(x, y)

Compute the power of x elevated y, it is equivalent to "(x)^(y)".

print(t)
print(t, l)

Print the value of expression t with loglevel l. If l is not specified then a default log level is used.
Returns the value of the expression printed.

Prints t with loglevel l

random(x)

Return a pseudo random value between 0.0 and 1.0. x is the index of the internal variable which will
be used to save the seed/state.

root(expr, max)

Find an input value for which the function represented by expr with argument ld(0) is 0 in the interval
0..max.

The expression in expr must denote a continuous function or the result is undefined.

ld(0) is used to represent the function input value, which means that the given expression will be
evaluated multiple times with various input values that the expression can access through ld(0).
When the expression evaluates to 0 then the corresponding input value will be returned.

round(expr)

Round the value of expression expr to the nearest integer. For example, "round(1.5)" is "2.0".

sin(x)

Compute sine of x.

sinh(x)

Compute hyperbolic sine of x.

sqrt(expr)

Compute the square root of expr. This is equivalent to "(expr)^.5".

squish(x)

Compute expression 1/(1 + exp(4*x)).

st(var, expr)

Store the value of the expression expr in an internal variable. var specifies the number of the variable
where to store the value, and it is a value ranging from 0 to 9. The function returns the value stored in
the internal variable. Note, Variables are currently not shared between expressions.

tan(x)

Compute tangent of x.

tanh(x)

Compute hyperbolic tangent of x.

taylor(expr, x)
taylor(expr, x, id)

Evaluate a Taylor series at x, given an expression representing the ld(id)-th derivative of a
function at 0.

When the series does not converge the result is undefined.

ld(id) is used to represent the derivative order in expr, which means that the given expression will be
evaluated multiple times with various input values that the expression can access through ld(id). If
id is not specified then 0 is assumed.

Note, when you have the derivatives at y instead of 0, taylor(expr, x-y) can be used.

time(0)

Return the current (wallclock) time in seconds.

trunc(expr)

Round the value of expression expr towards zero to the nearest integer. For example, "trunc(-1.5)" is
"-1.0".

while(cond, expr)

Evaluate expression expr while the expression cond is non-zero, and returns the value of the last expr

evaluation, or NAN if cond was always false.

The following constants are available:

PI

area of the unit disc, approximately 3.14

E

exp(1) (Euler’s number), approximately 2.718

PHI

golden ratio (1+sqrt(5))/2, approximately 1.618

Assuming that an expression is considered "true" if it has a non-zero value, note that:

* works like AND

+ works like OR

For example the construct:

if (A AND B) then C

is equivalent to:

if(A*B, C)

In your C code, you can extend the list of unary and binary functions, and define recognized constants, so
that they are available for your expressions.

The evaluator also recognizes the International System unit prefixes. If ’i’ is appended after the prefix,
binary prefixes are used, which are based on powers of 1024 instead of powers of 1000. The ’B’ postfix
multiplies the value by 8, and can be appended after a unit prefix or used alone. This allows using for
example ’KB’, ’MiB’, ’G’ and ’B’ as number postfix.

The list of available International System prefixes follows, with indication of the corresponding powers of
10 and of 2.

y

10^-24 / 2^-80

z

10^-21 / 2^-70

a

10^-18 / 2^-60

f

10^-15 / 2^-50

p

10^-12 / 2^-40

n

10^-9 / 2^-30

u

10^-6 / 2^-20

m

10^-3 / 2^-10

c

10^-2

d

10^-1

h

10^2

k

10^3 / 2^10

K

10^3 / 2^10

M

10^6 / 2^20

G

10^9 / 2^30

T

10^12 / 2^40

P

10^15 / 2^40

E

10^18 / 2^50

Z

10^21 / 2^60

Y

10^24 / 2^70

9 Codec Options# TOC

libavcodec provides some generic global options, which can be set on all the encoders and decoders. In
addition each codec may support so-called private options, which are specific for a given codec.

Sometimes, a global option may only affect a specific kind of codec, and may be nonsensical or ignored
by another, so you need to be aware of the meaning of the specified options. Also some options are meant
only for decoding or encoding.

Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in
the AVCodecContext options or using the libavutil/opt.h API for programmatic use.

The list of supported options follow:

b integer (encoding,audio,video)

Set bitrate in bits/s. Default value is 200K.

ab integer (encoding,audio)

Set audio bitrate (in bits/s). Default value is 128K.

bt integer (encoding,video)

Set video bitrate tolerance (in bits/s). In 1-pass mode, bitrate tolerance specifies how far ratecontrol is
willing to deviate from the target average bitrate value. This is not related to min/max bitrate.
Lowering tolerance too much has an adverse effect on quality.

flags flags (decoding/encoding,audio,video,subtitles)

Set generic flags.

Possible values:

‘mv4’

Use four motion vector by macroblock (mpeg4).

‘qpel’

Use 1/4 pel motion compensation.

‘loop’

Use loop filter.

‘qscale’

Use fixed qscale.

‘pass1’

Use internal 2pass ratecontrol in first pass mode.

‘pass2’

Use internal 2pass ratecontrol in second pass mode.

‘gray’

Only decode/encode grayscale.

‘emu_edge’

Do not draw edges.

‘psnr’

Set error[?] variables during encoding.

‘truncated’
‘ildct’

Use interlaced DCT.

‘low_delay’

Force low delay.

‘global_header’

Place global headers in extradata instead of every keyframe.

‘bitexact’

Only write platform-, build- and time-independent data. (except (I)DCT). This ensures that file
and data checksums are reproducible and match between platforms. Its primary use is for
regression testing.

‘aic’

Apply H263 advanced intra coding / mpeg4 ac prediction.

‘cbp’

Deprecated, use mpegvideo private options instead.

‘qprd’

Deprecated, use mpegvideo private options instead.

‘ilme’

Apply interlaced motion estimation.

‘cgop’

Use closed gop.

me_method integer (encoding,video)

Set motion estimation method.

Possible values:

‘zero’

zero motion estimation (fastest)

‘full’

full motion estimation (slowest)

‘epzs’

EPZS motion estimation (default)

‘esa’

esa motion estimation (alias for full)

‘tesa’

tesa motion estimation

‘dia’

dia motion estimation (alias for epzs)

‘log’

log motion estimation

‘phods’

phods motion estimation

‘x1’

X1 motion estimation

‘hex’

hex motion estimation

‘umh’

umh motion estimation

‘iter’

iter motion estimation

extradata_size integer

Set extradata size.

time_base rational number

Set codec time base.

It is the fundamental unit of time (in seconds) in terms of which frame timestamps are represented.
For fixed-fps content, timebase should be 1 / frame_rate and timestamp increments should be
identically 1.

g integer (encoding,video)

Set the group of picture (GOP) size. Default value is 12.

ar integer (decoding/encoding,audio)

Set audio sampling rate (in Hz).

ac integer (decoding/encoding,audio)

Set number of audio channels.

cutoff integer (encoding,audio)

Set cutoff bandwidth. (Supported only by selected encoders, see their respective documentation
sections.)

frame_size integer (encoding,audio)

Set audio frame size.

Each submitted frame except the last must contain exactly frame_size samples per channel. May be 0
when the codec has CODEC_CAP_VARIABLE_FRAME_SIZE set, in that case the frame size is not
restricted. It is set by some decoders to indicate constant frame size.

frame_number integer

Set the frame number.

delay integer
qcomp float (encoding,video)

Set video quantizer scale compression (VBR). It is used as a constant in the ratecontrol equation.
Recommended range for default rc_eq: 0.0-1.0.

qblur float (encoding,video)

Set video quantizer scale blur (VBR).

qmin integer (encoding,video)

Set min video quantizer scale (VBR). Must be included between -1 and 69, default value is 2.

qmax integer (encoding,video)

Set max video quantizer scale (VBR). Must be included between -1 and 1024, default value is 31.

qdiff integer (encoding,video)

Set max difference between the quantizer scale (VBR).

bf integer (encoding,video)

Set max number of B frames between non-B-frames.

Must be an integer between -1 and 16. 0 means that B-frames are disabled. If a value of -1 is used, it
will choose an automatic value depending on the encoder.

Default value is 0.

b_qfactor float (encoding,video)

Set qp factor between P and B frames.

rc_strategy integer (encoding,video)

Set ratecontrol method.

b_strategy integer (encoding,video)

Set strategy to choose between I/P/B-frames.

ps integer (encoding,video)

Set RTP payload size in bytes.

mv_bits integer
header_bits integer
i_tex_bits integer
p_tex_bits integer
i_count integer
p_count integer
skip_count integer
misc_bits integer
frame_bits integer
codec_tag integer
bug flags (decoding,video)

Workaround not auto detected encoder bugs.

Possible values:

‘autodetect’
‘old_msmpeg4’

some old lavc generated msmpeg4v3 files (no autodetection)

‘xvid_ilace’

Xvid interlacing bug (autodetected if fourcc==XVIX)

‘ump4’

(autodetected if fourcc==UMP4)

‘no_padding’

padding bug (autodetected)

‘amv’
‘ac_vlc’

illegal vlc bug (autodetected per fourcc)

‘qpel_chroma’
‘std_qpel’

old standard qpel (autodetected per fourcc/version)

‘qpel_chroma2’
‘direct_blocksize’

direct-qpel-blocksize bug (autodetected per fourcc/version)

‘edge’

edge padding bug (autodetected per fourcc/version)

‘hpel_chroma’
‘dc_clip’
‘ms’

Workaround various bugs in microsoft broken decoders.

‘trunc’

trancated frames

lelim integer (encoding,video)

Set single coefficient elimination threshold for luminance (negative values also consider DC
coefficient).

celim integer (encoding,video)

Set single coefficient elimination threshold for chrominance (negative values also consider dc
coefficient)

strict integer (decoding/encoding,audio,video)

Specify how strictly to follow the standards.

Possible values:

‘very’

strictly conform to an older more strict version of the spec or reference software

‘strict’

strictly conform to all the things in the spec no matter what consequences

‘normal’
‘unofficial’

allow unofficial extensions

‘experimental’

allow non standardized experimental things, experimental (unfinished/work in progress/not well
tested) decoders and encoders. Note: experimental decoders can pose a security risk, do not use
this for decoding untrusted input.

b_qoffset float (encoding,video)

Set QP offset between P and B frames.

err_detect flags (decoding,audio,video)

Set error detection flags.

Possible values:

‘crccheck’

verify embedded CRCs

‘bitstream’

detect bitstream specification deviations

‘buffer’

detect improper bitstream length

‘explode’

abort decoding on minor error detection

‘ignore_err’

ignore decoding errors, and continue decoding. This is useful if you want to analyze the content
of a video and thus want everything to be decoded no matter what. This option will not result in
a video that is pleasing to watch in case of errors.

‘careful’

consider things that violate the spec and have not been seen in the wild as errors

‘compliant’

consider all spec non compliancies as errors

‘aggressive’

consider things that a sane encoder should not do as an error

has_b_frames integer
block_align integer
mpeg_quant integer (encoding,video)

Use MPEG quantizers instead of H.263.

qsquish float (encoding,video)

How to keep quantizer between qmin and qmax (0 = clip, 1 = use differentiable function).

rc_qmod_amp float (encoding,video)

Set experimental quantizer modulation.

rc_qmod_freq integer (encoding,video)

Set experimental quantizer modulation.

rc_override_count integer
rc_eq string (encoding,video)

Set rate control equation. When computing the expression, besides the standard functions defined in
the section ’Expression Evaluation’, the following functions are available: bits2qp(bits), qp2bits(qp).
Also the following constants are available: iTex pTex tex mv fCode iCount mcVar var isI isP isB
avgQP qComp avgIITex avgPITex avgPPTex avgBPTex avgTex.

maxrate integer (encoding,audio,video)

Set max bitrate tolerance (in bits/s). Requires bufsize to be set.

minrate integer (encoding,audio,video)

Set min bitrate tolerance (in bits/s). Most useful in setting up a CBR encode. It is of little use
elsewise.

bufsize integer (encoding,audio,video)

Set ratecontrol buffer size (in bits).

rc_buf_aggressivity float (encoding,video)

Currently useless.

i_qfactor float (encoding,video)

Set QP factor between P and I frames.

i_qoffset float (encoding,video)

Set QP offset between P and I frames.

rc_init_cplx float (encoding,video)

Set initial complexity for 1-pass encoding.

dct integer (encoding,video)

Set DCT algorithm.

Possible values:

‘auto’

autoselect a good one (default)

‘fastint’

fast integer

‘int’

accurate integer

‘mmx’
‘altivec’
‘faan’

floating point AAN DCT

lumi_mask float (encoding,video)

Compress bright areas stronger than medium ones.

tcplx_mask float (encoding,video)

Set temporal complexity masking.

scplx_mask float (encoding,video)

Set spatial complexity masking.

p_mask float (encoding,video)

Set inter masking.

dark_mask float (encoding,video)

Compress dark areas stronger than medium ones.

idct integer (decoding/encoding,video)

Select IDCT implementation.

Possible values:

‘auto’
‘int’
‘simple’
‘simplemmx’
‘simpleauto’

Automatically pick a IDCT compatible with the simple one

‘arm’
‘altivec’
‘sh4’
‘simplearm’
‘simplearmv5te’
‘simplearmv6’
‘simpleneon’
‘simplealpha’
‘ipp’
‘xvidmmx’
‘faani’

floating point AAN IDCT

slice_count integer
ec flags (decoding,video)

Set error concealment strategy.

Possible values:

‘guess_mvs’

iterative motion vector (MV) search (slow)

‘deblock’

use strong deblock filter for damaged MBs

‘favor_inter’

favor predicting from the previous frame instead of the current

bits_per_coded_sample integer
pred integer (encoding,video)

Set prediction method.

Possible values:

‘left’
‘plane’
‘median’

aspect rational number (encoding,video)

Set sample aspect ratio.

sar rational number (encoding,video)

Set sample aspect ratio. Alias to aspect.

debug flags (decoding/encoding,audio,video,subtitles)

Print specific debug info.

Possible values:

‘pict’

picture info

‘rc’

rate control

‘bitstream’
‘mb_type’

macroblock (MB) type

‘qp’

per-block quantization parameter (QP)

‘mv’

motion vector

‘dct_coeff’
‘green_metadata’

display complexity metadata for the upcoming frame, GoP or for a given duration.

‘skip’
‘startcode’
‘pts’
‘er’

error recognition

‘mmco’

memory management control operations (H.264)

‘bugs’

‘vis_qp’

visualize quantization parameter (QP), lower QP are tinted greener

‘vis_mb_type’

visualize block types

‘buffers’

picture buffer allocations

‘thread_ops’

threading operations

‘nomc’

skip motion compensation

cmp integer (encoding,video)

Set full pel me compare function.

Possible values:

‘sad’

sum of absolute differences, fast (default)

‘sse’

sum of squared errors

‘satd’

sum of absolute Hadamard transformed differences

‘dct’

sum of absolute DCT transformed differences

‘psnr’

sum of squared quantization errors (avoid, low quality)

‘bit’

number of bits needed for the block

‘rd’

rate distortion optimal, slow

‘zero’

0

‘vsad’

sum of absolute vertical differences

‘vsse’

sum of squared vertical differences

‘nsse’

noise preserving sum of squared differences

‘w53’

5/3 wavelet, only used in snow

‘w97’

9/7 wavelet, only used in snow

‘dctmax’
‘chroma’

subcmp integer (encoding,video)

Set sub pel me compare function.

Possible values:

‘sad’

sum of absolute differences, fast (default)

‘sse’

sum of squared errors

‘satd’

sum of absolute Hadamard transformed differences

‘dct’

sum of absolute DCT transformed differences

‘psnr’

sum of squared quantization errors (avoid, low quality)

‘bit’

number of bits needed for the block

‘rd’

rate distortion optimal, slow

‘zero’

0

‘vsad’

sum of absolute vertical differences

‘vsse’

sum of squared vertical differences

‘nsse’

noise preserving sum of squared differences

‘w53’

5/3 wavelet, only used in snow

‘w97’

9/7 wavelet, only used in snow

‘dctmax’
‘chroma’

mbcmp integer (encoding,video)

Set macroblock compare function.

Possible values:

‘sad’

sum of absolute differences, fast (default)

‘sse’

sum of squared errors

‘satd’

sum of absolute Hadamard transformed differences

‘dct’

sum of absolute DCT transformed differences

‘psnr’

sum of squared quantization errors (avoid, low quality)

‘bit’

number of bits needed for the block

‘rd’

rate distortion optimal, slow

‘zero’

0

‘vsad’

sum of absolute vertical differences

‘vsse’

sum of squared vertical differences

‘nsse’

noise preserving sum of squared differences

‘w53’

5/3 wavelet, only used in snow

‘w97’

9/7 wavelet, only used in snow

‘dctmax’
‘chroma’

ildctcmp integer (encoding,video)

Set interlaced dct compare function.

Possible values:

‘sad’

sum of absolute differences, fast (default)

‘sse’

sum of squared errors

‘satd’

sum of absolute Hadamard transformed differences

‘dct’

sum of absolute DCT transformed differences

‘psnr’

sum of squared quantization errors (avoid, low quality)

‘bit’

number of bits needed for the block

‘rd’

rate distortion optimal, slow

‘zero’

0

‘vsad’

sum of absolute vertical differences

‘vsse’

sum of squared vertical differences

‘nsse’

noise preserving sum of squared differences

‘w53’

5/3 wavelet, only used in snow

‘w97’

9/7 wavelet, only used in snow

‘dctmax’
‘chroma’

dia_size integer (encoding,video)

Set diamond type & size for motion estimation.

last_pred integer (encoding,video)

Set amount of motion predictors from the previous frame.

preme integer (encoding,video)

Set pre motion estimation.

precmp integer (encoding,video)

Set pre motion estimation compare function.

Possible values:

‘sad’

sum of absolute differences, fast (default)

‘sse’

sum of squared errors

‘satd’

sum of absolute Hadamard transformed differences

‘dct’

sum of absolute DCT transformed differences

‘psnr’

sum of squared quantization errors (avoid, low quality)

‘bit’

number of bits needed for the block

‘rd’

rate distortion optimal, slow

‘zero’

0

‘vsad’

sum of absolute vertical differences

‘vsse’

sum of squared vertical differences

‘nsse’

noise preserving sum of squared differences

‘w53’

5/3 wavelet, only used in snow

‘w97’

9/7 wavelet, only used in snow

‘dctmax’
‘chroma’

pre_dia_size integer (encoding,video)

Set diamond type & size for motion estimation pre-pass.

subq integer (encoding,video)

Set sub pel motion estimation quality.

dtg_active_format integer
me_range integer (encoding,video)

Set limit motion vectors range (1023 for DivX player).

ibias integer (encoding,video)

Set intra quant bias.

pbias integer (encoding,video)

Set inter quant bias.

color_table_id integer
global_quality integer (encoding,audio,video)
coder integer (encoding,video)

Possible values:

‘vlc’

variable length coder / huffman coder

‘ac’

arithmetic coder

‘raw’

raw (no encoding)

‘rle’

run-length coder

‘deflate’

deflate-based coder

context integer (encoding,video)

Set context model.

slice_flags integer

mbd integer (encoding,video)

Set macroblock decision algorithm (high quality mode).

Possible values:

‘simple’

use mbcmp (default)

‘bits’

use fewest bits

‘rd’

use best rate distortion

stream_codec_tag integer
sc_threshold integer (encoding,video)

Set scene change threshold.

lmin integer (encoding,video)

Set min lagrange factor (VBR).

lmax integer (encoding,video)

Set max lagrange factor (VBR).

nr integer (encoding,video)

Set noise reduction.

rc_init_occupancy integer (encoding,video)

Set number of bits which should be loaded into the rc buffer before decoding starts.

flags2 flags (decoding/encoding,audio,video)

Possible values:

‘fast’

Allow non spec compliant speedup tricks.

‘sgop’

Deprecated, use mpegvideo private options instead.

‘noout’

Skip bitstream encoding.

‘ignorecrop’

Ignore cropping information from sps.

‘local_header’

Place global headers at every keyframe instead of in extradata.

‘chunks’

Frame data might be split into multiple chunks.

‘showall’

Show all frames before the first keyframe.

‘skiprd’

Deprecated, use mpegvideo private options instead.

‘export_mvs’

Export motion vectors into frame side-data (see AV_FRAME_DATA_MOTION_VECTORS) for
codecs that support it. See also doc/examples/export_mvs.c.

error integer (encoding,video)
qns integer (encoding,video)

Deprecated, use mpegvideo private options instead.

threads integer (decoding/encoding,video)

Set the number of threads to be used, in case the selected codec implementation supports
multi-threading.

Possible values:

‘auto, 0’

automatically select the number of threads to set

Default value is ‘auto’.

me_threshold integer (encoding,video)

Set motion estimation threshold.

mb_threshold integer (encoding,video)

Set macroblock threshold.

dc integer (encoding,video)

Set intra_dc_precision.

nssew integer (encoding,video)

Set nsse weight.

skip_top integer (decoding,video)

Set number of macroblock rows at the top which are skipped.

skip_bottom integer (decoding,video)

Set number of macroblock rows at the bottom which are skipped.

profile integer (encoding,audio,video)

Possible values:

‘unknown’
‘aac_main’
‘aac_low’
‘aac_ssr’
‘aac_ltp’
‘aac_he’
‘aac_he_v2’
‘aac_ld’
‘aac_eld’
‘mpeg2_aac_low’
‘mpeg2_aac_he’
‘mpeg4_sp’
‘mpeg4_core’
‘mpeg4_main’
‘mpeg4_asp’
‘dts’
‘dts_es’
‘dts_96_24’
‘dts_hd_hra’

‘dts_hd_ma’
level integer (encoding,audio,video)

Possible values:

‘unknown’
lowres integer (decoding,audio,video)

Decode at 1= 1/2, 2=1/4, 3=1/8 resolutions.

skip_threshold integer (encoding,video)

Set frame skip threshold.

skip_factor integer (encoding,video)

Set frame skip factor.

skip_exp integer (encoding,video)

Set frame skip exponent. Negative values behave identical to the corresponding positive ones, except
that the score is normalized. Positive values exist primarily for compatibility reasons and are not so
useful.

skipcmp integer (encoding,video)

Set frame skip compare function.

Possible values:

‘sad’

sum of absolute differences, fast (default)

‘sse’

sum of squared errors

‘satd’

sum of absolute Hadamard transformed differences

‘dct’

sum of absolute DCT transformed differences

‘psnr’

sum of squared quantization errors (avoid, low quality)

‘bit’

number of bits needed for the block

‘rd’

rate distortion optimal, slow

‘zero’

0

‘vsad’

sum of absolute vertical differences

‘vsse’

sum of squared vertical differences

‘nsse’

noise preserving sum of squared differences

‘w53’

5/3 wavelet, only used in snow

‘w97’

9/7 wavelet, only used in snow

‘dctmax’
‘chroma’

border_mask float (encoding,video)

Increase the quantizer for macroblocks close to borders.

mblmin integer (encoding,video)

Set min macroblock lagrange factor (VBR).

mblmax integer (encoding,video)

Set max macroblock lagrange factor (VBR).

mepc integer (encoding,video)

Set motion estimation bitrate penalty compensation (1.0 = 256).

skip_loop_filter integer (decoding,video)
skip_idct integer (decoding,video)
skip_frame integer (decoding,video)

Make decoder discard processing depending on the frame type selected by the option value.

skip_loop_filter skips frame loop filtering, skip_idct skips frame IDCT/dequantization,
skip_frame skips decoding.

Possible values:

‘none’

Discard no frame.

‘default’

Discard useless frames like 0-sized frames.

‘noref’

Discard all non-reference frames.

‘bidir’

Discard all bidirectional frames.

‘nokey’

Discard all frames excepts keyframes.

‘all’

Discard all frames.

Default value is ‘default’.

bidir_refine integer (encoding,video)

Refine the two motion vectors used in bidirectional macroblocks.

brd_scale integer (encoding,video)

Downscale frames for dynamic B-frame decision.

keyint_min integer (encoding,video)

Set minimum interval between IDR-frames.

refs integer (encoding,video)

Set reference frames to consider for motion compensation.

chromaoffset integer (encoding,video)

Set chroma qp offset from luma.

trellis integer (encoding,audio,video)

Set rate-distortion optimal quantization.

sc_factor integer (encoding,video)

Set value multiplied by qscale for each frame and added to scene_change_score.

mv0_threshold integer (encoding,video)
b_sensitivity integer (encoding,video)

Adjust sensitivity of b_frame_strategy 1.

compression_level integer (encoding,audio,video)
min_prediction_order integer (encoding,audio)
max_prediction_order integer (encoding,audio)
timecode_frame_start integer (encoding,video)

Set GOP timecode frame start number, in non drop frame format.

request_channels integer (decoding,audio)

Set desired number of audio channels.

bits_per_raw_sample integer
channel_layout integer (decoding/encoding,audio)

Possible values:

request_channel_layout integer (decoding,audio)

Possible values:

rc_max_vbv_use float (encoding,video)
rc_min_vbv_use float (encoding,video)
ticks_per_frame integer (decoding/encoding,audio,video)

color_primaries integer (decoding/encoding,video)

Possible values:

‘bt709’

BT.709

‘bt470m’

BT.470 M

‘bt470bg’

BT.470 BG

‘smpte170m’

SMPTE 170 M

‘smpte240m’

SMPTE 240 M

‘film’

Film

‘bt2020’

BT.2020

‘smpte428’
‘smpte428_1’

SMPTE ST 428-1

‘smpte431’

SMPTE 431-2

‘smpte432’

SMPTE 432-1

‘jedec-p22’

JEDEC P22

color_trc integer (decoding/encoding,video)

Possible values:

‘bt709’

BT.709

‘gamma22’

BT.470 M

‘gamma28’

BT.470 BG

‘smpte170m’

SMPTE 170 M

‘smpte240m’

SMPTE 240 M

‘linear’

Linear

‘log’
‘log100’

Log

‘log_sqrt’
‘log316’

Log square root

‘iec61966_2_4’
‘iec61966-2-4’

IEC 61966-2-4

‘bt1361’
‘bt1361e’

BT.1361

‘iec61966_2_1’
‘iec61966-2-1’

IEC 61966-2-1

‘bt2020_10’
‘bt2020_10bit’

BT.2020 - 10 bit

‘bt2020_12’
‘bt2020_12bit’

BT.2020 - 12 bit

‘smpte2084’

SMPTE ST 2084

‘smpte428’
‘smpte428_1’

SMPTE ST 428-1

‘arib-std-b67’

ARIB STD-B67

colorspace integer (decoding/encoding,video)

Possible values:

‘rgb’

RGB

‘bt709’

BT.709

‘fcc’

FCC

‘bt470bg’

BT.470 BG

‘smpte170m’

SMPTE 170 M

‘smpte240m’

SMPTE 240 M

‘ycocg’

YCOCG

‘bt2020nc’
‘bt2020_ncl’

BT.2020 NCL

‘bt2020c’
‘bt2020_cl’

BT.2020 CL

‘smpte2085’

SMPTE 2085

color_range integer (decoding/encoding,video)

If used as input parameter, it serves as a hint to the decoder, which color_range the input has.
Possible values:

‘tv’
‘mpeg’

MPEG (219*2^(n-8))

‘pc’
‘jpeg’

JPEG (2^n-1)

chroma_sample_location integer (decoding/encoding,video)

Possible values:

‘left’
‘center’
‘topleft’

‘top’
‘bottomleft’
‘bottom’

log_level_offset integer

Set the log level offset.

slices integer (encoding,video)

Number of slices, used in parallelized encoding.

thread_type flags (decoding/encoding,video)

Select which multithreading methods to use.

Use of ‘frame’ will increase decoding delay by one frame per thread, so clients which cannot
provide future frames should not use it.

Possible values:

‘slice’

Decode more than one part of a single frame at once.

Multithreading using slices works only when the video was encoded with slices.

‘frame’

Decode more than one frame at once.

Default value is ‘slice+frame’.

audio_service_type integer (encoding,audio)

Set audio service type.

Possible values:

‘ma’

Main Audio Service

‘ef’

Effects

‘vi’

Visually Impaired

‘hi’

Hearing Impaired

‘di’

Dialogue

‘co’

Commentary

‘em’

Emergency

‘vo’

Voice Over

‘ka’

Karaoke

request_sample_fmt sample_fmt (decoding,audio)

Set sample format audio decoders should prefer. Default value is none.

pkt_timebase rational number
sub_charenc encoding (decoding,subtitles)

Set the input subtitles character encoding.

field_order field_order (video)

Set/override the field order of the video. Possible values:

‘progressive’

Progressive video

‘tt’

Interlaced video, top field coded and displayed first

‘bb’

Interlaced video, bottom field coded and displayed first

‘tb’

Interlaced video, top coded first, bottom displayed first

‘bt’

Interlaced video, bottom coded first, top displayed first

skip_alpha bool (decoding,video)

Set to 1 to disable processing alpha (transparency). This works like the ‘gray’ flag in the flags
option which skips chroma information instead of alpha. Default is 0.

codec_whitelist list (input)

"," separated list of allowed decoders. By default all are allowed.

dump_separator string (input)

Separator used to separate the fields printed on the command line about the Stream parameters. For
example to separate the fields with newlines and indention:

ffprobe -dump_separator "
 " -i ~/videos/matrixbench_mpeg2.mpg

max_pixels integer (decoding/encoding,video)

Maximum number of pixels per image. This value can be used to avoid out of memory failures due to
large images.

apply_cropping bool (decoding,video)

Enable cropping if cropping parameters are multiples of the required alignment for the left and top
parameters. If the alignment is not met the cropping will be partially applied to maintain alignment.
Default is 1 (enabled). Note: The required alignment depends on if AV_CODEC_FLAG_UNALIGNED
is set and the CPU. AV_CODEC_FLAG_UNALIGNED cannot be changed from the command line.
Also hardware decoders will not apply left/top Cropping.

10 Decoders# TOC

Decoders are configured elements in FFmpeg which allow the decoding of multimedia streams.

When you configure your FFmpeg build, all the supported native decoders are enabled by default.
Decoders requiring an external library must be enabled manually via the corresponding --enable-lib
option. You can list all available decoders using the configure option --list-decoders.

You can disable all the decoders with the configure option --disable-decoders and selectively
enable / disable single decoders with the options --enable-decoder=DECODER /
--disable-decoder=DECODER.

The option -decoders of the ff* tools will display the list of enabled decoders.

11 Video Decoders# TOC

A description of some of the currently available video decoders follows.

11.1 rawvideo# TOC

Raw video decoder.

This decoder decodes rawvideo streams.

11.1.1 Options# TOC

top top_field_first

Specify the assumed field type of the input video.

-1

the video is assumed to be progressive (default)

0

bottom-field-first is assumed

1

top-field-first is assumed

12 Audio Decoders# TOC

A description of some of the currently available audio decoders follows.

12.1 ac3# TOC

AC-3 audio decoder.

This decoder implements part of ATSC A/52:2010 and ETSI TS 102 366, as well as the undocumented
RealAudio 3 (a.k.a. dnet).

12.1.1 AC-3 Decoder Options# TOC

-drc_scale value

Dynamic Range Scale Factor. The factor to apply to dynamic range values from the AC-3 stream.
This factor is applied exponentially. There are 3 notable scale factor ranges:

drc_scale == 0

DRC disabled. Produces full range audio.

0 < drc_scale <= 1

DRC enabled. Applies a fraction of the stream DRC value. Audio reproduction is between full
range and full compression.

drc_scale > 1

DRC enabled. Applies drc_scale asymmetrically. Loud sounds are fully compressed. Soft
sounds are enhanced.

12.2 flac# TOC

FLAC audio decoder.

This decoder aims to implement the complete FLAC specification from Xiph.

12.2.1 FLAC Decoder options# TOC

-use_buggy_lpc

The lavc FLAC encoder used to produce buggy streams with high lpc values (like the default value).
This option makes it possible to decode such streams correctly by using lavc’s old buggy lpc logic for
decoding.

12.3 ffwavesynth# TOC

Internal wave synthesizer.

This decoder generates wave patterns according to predefined sequences. Its use is purely internal and the
format of the data it accepts is not publicly documented.

12.4 libcelt# TOC

libcelt decoder wrapper.

libcelt allows libavcodec to decode the Xiph CELT ultra-low delay audio codec. Requires the presence of
the libcelt headers and library during configuration. You need to explicitly configure the build with
--enable-libcelt.

12.5 libgsm# TOC

libgsm decoder wrapper.

libgsm allows libavcodec to decode the GSM full rate audio codec. Requires the presence of the libgsm
headers and library during configuration. You need to explicitly configure the build with
--enable-libgsm.

This decoder supports both the ordinary GSM and the Microsoft variant.

12.6 libilbc# TOC

libilbc decoder wrapper.

libilbc allows libavcodec to decode the Internet Low Bitrate Codec (iLBC) audio codec. Requires the
presence of the libilbc headers and library during configuration. You need to explicitly configure the build
with --enable-libilbc.

12.6.1 Options# TOC

The following option is supported by the libilbc wrapper.

enhance

Enable the enhancement of the decoded audio when set to 1. The default value is 0 (disabled).

12.7 libopencore-amrnb# TOC

libopencore-amrnb decoder wrapper.

libopencore-amrnb allows libavcodec to decode the Adaptive Multi-Rate Narrowband audio codec. Using
it requires the presence of the libopencore-amrnb headers and library during configuration. You need to
explicitly configure the build with --enable-libopencore-amrnb.

An FFmpeg native decoder for AMR-NB exists, so users can decode AMR-NB without this library.

12.8 libopencore-amrwb# TOC

libopencore-amrwb decoder wrapper.

libopencore-amrwb allows libavcodec to decode the Adaptive Multi-Rate Wideband audio codec. Using it
requires the presence of the libopencore-amrwb headers and library during configuration. You need to
explicitly configure the build with --enable-libopencore-amrwb.

An FFmpeg native decoder for AMR-WB exists, so users can decode AMR-WB without this library.

12.9 libopus# TOC

libopus decoder wrapper.

libopus allows libavcodec to decode the Opus Interactive Audio Codec. Requires the presence of the
libopus headers and library during configuration. You need to explicitly configure the build with
--enable-libopus.

An FFmpeg native decoder for Opus exists, so users can decode Opus without this library.

13 Subtitles Decoders# TOC

13.1 dvbsub# TOC

13.1.1 Options# TOC

compute_clut
-1

Compute clut if no matching CLUT is in the stream.

0

Never compute CLUT

1

Always compute CLUT and override the one provided in the stream.

dvb_substream

Selects the dvb substream, or all substreams if -1 which is default.

13.2 dvdsub# TOC

This codec decodes the bitmap subtitles used in DVDs; the same subtitles can also be found in VobSub
file pairs and in some Matroska files.

13.2.1 Options# TOC

palette

Specify the global palette used by the bitmaps. When stored in VobSub, the palette is normally
specified in the index file; in Matroska, the palette is stored in the codec extra-data in the same format
as in VobSub. In DVDs, the palette is stored in the IFO file, and therefore not available when reading
from dumped VOB files.

The format for this option is a string containing 16 24-bits hexadecimal numbers (without 0x prefix)
separated by comas, for example 0d00ee, ee450d, 101010, eaeaea, 0ce60b,
ec14ed, ebff0b, 0d617a, 7b7b7b, d1d1d1, 7b2a0e, 0d950c, 0f007b, cf0dec,
cfa80c, 7c127b.

ifo_palette

Specify the IFO file from which the global palette is obtained. (experimental)

forced_subs_only

Only decode subtitle entries marked as forced. Some titles have forced and non-forced subtitles in the
same track. Setting this flag to 1 will only keep the forced subtitles. Default value is 0.

13.3 libzvbi-teletext# TOC

Libzvbi allows libavcodec to decode DVB teletext pages and DVB teletext subtitles. Requires the
presence of the libzvbi headers and library during configuration. You need to explicitly configure the build
with --enable-libzvbi.

13.3.1 Options# TOC

txt_page

List of teletext page numbers to decode. You may use the special * string to match all pages. Pages
that do not match the specified list are dropped. Default value is *.

txt_chop_top

Discards the top teletext line. Default value is 1.

txt_format

Specifies the format of the decoded subtitles. The teletext decoder is capable of decoding the teletext
pages to bitmaps or to simple text, you should use "bitmap" for teletext pages, because certain
graphics and colors cannot be expressed in simple text. You might use "text" for teletext based
subtitles if your application can handle simple text based subtitles. Default value is bitmap.

txt_left

X offset of generated bitmaps, default is 0.

txt_top

Y offset of generated bitmaps, default is 0.

txt_chop_spaces

Chops leading and trailing spaces and removes empty lines from the generated text. This option is
useful for teletext based subtitles where empty spaces may be present at the start or at the end of the lines
or empty lines may be present between the subtitle lines because of double-sized teletext characters.
Default value is 1.

txt_duration

Sets the display duration of the decoded teletext pages or subtitles in milliseconds. Default value is
30000 which is 30 seconds.

txt_transparent

Force transparent background of the generated teletext bitmaps. Default value is 0 which means an
opaque background.

txt_opacity

Sets the opacity (0-255) of the teletext background. If txt_transparent is not set, it only affects
characters between a start box and an end box, typically subtitles. Default value is 0 if
txt_transparent is set, 255 otherwise.

14 Encoders# TOC

Encoders are configured elements in FFmpeg which allow the encoding of multimedia streams.

When you configure your FFmpeg build, all the supported native encoders are enabled by default.
Encoders requiring an external library must be enabled manually via the corresponding --enable-lib
option. You can list all available encoders using the configure option --list-encoders.

You can disable all the encoders with the configure option --disable-encoders and selectively
enable / disable single encoders with the options --enable-encoder=ENCODER /
--disable-encoder=ENCODER.

The option -encoders of the ff* tools will display the list of enabled encoders.

15 Audio Encoders# TOC

A description of some of the currently available audio encoders follows.

15.1 aac# TOC

Advanced Audio Coding (AAC) encoder.

This encoder is the default AAC encoder, natively implemented into FFmpeg. Its quality is on par or better
than libfdk_aac at the default bitrate of 128kbps. This encoder also implements more options, profiles and
samplerates than other encoders (with only the AAC-HE profile pending to be implemented) so this
encoder has become the default and is the recommended choice.

15.1.1 Options# TOC

b

Set bit rate in bits/s. Setting this automatically activates constant bit rate (CBR) mode. If this option is
unspecified it is set to 128kbps.

q

Set quality for variable bit rate (VBR) mode. This option is valid only using the ffmpeg
command-line tool. For library interface users, use global_quality.

cutoff

Set cutoff frequency. If unspecified will allow the encoder to dynamically adjust the cutoff to
improve clarity on low bitrates.

aac_coder

Set AAC encoder coding method. Possible values:

‘twoloop’

Two loop searching (TLS) method.

This method first sets quantizers depending on band thresholds and then tries to find an optimal
combination by adding or subtracting a specific value from all quantizers and adjusting some
individual quantizer a little. Will tune itself based on whether aac_is, aac_ms and aac_pns
are enabled. This is the default choice for a coder.

‘anmr’

Average noise to mask ratio (ANMR) trellis-based solution.

This is an experimental coder which currently produces a lower quality, is more unstable and is
slower than the default twoloop coder but has potential. Currently has no support for the
aac_is or aac_pns options. Not currently recommended.

‘fast’

Constant quantizer method.

This method sets a constant quantizer for all bands. This is the fastest of all the methods and has
no rate control or support for aac_is or aac_pns. Not recommended.

aac_ms

Sets mid/side coding mode. The default value of "auto" will automatically use M/S with bands which
will benefit from such coding. Can be forced for all bands using the value "enable", which is mainly useful
for debugging or disabled using "disable".

aac_is

Sets intensity stereo coding tool usage. By default, it’s enabled and will automatically toggle IS for
similar pairs of stereo bands if it’s beneficial. Can be disabled for debugging by setting the value to
"disable".

aac_pns

Uses perceptual noise substitution to replace low entropy high frequency bands with imperceptible
white noise during the decoding process. By default, it’s enabled, but can be disabled for debugging
purposes by using "disable".

aac_tns

Enables the use of a multitap FIR filter which spans through the high frequency bands to hide
quantization noise during the encoding process and is reverted by the decoder. As well as decreasing
unpleasant artifacts in the high range this also reduces the entropy in the high bands and allows for
more bits to be used by the mid-low bands. By default it’s enabled but can be disabled for debugging
by setting the option to "disable".

aac_ltp

Enables the use of the long term prediction extension which increases coding efficiency in very low
bandwidth situations such as encoding of voice or solo piano music by extending constant harmonic
peaks in bands throughout frames. This option is implied by profile:a aac_low and is incompatible
with aac_pred. Use in conjunction with -ar to decrease the samplerate.

aac_pred

Enables the use of a more traditional style of prediction where the spectral coefficients transmitted
are replaced by the difference of the current coefficients minus the previous "predicted" coefficients.
In theory and sometimes in practice this can improve quality for low to mid bitrate audio. This option
implies the aac_main profile and is incompatible with aac_ltp.

profile

Sets the encoding profile, possible values:

‘aac_low’

The default, AAC "Low-complexity" profile. Is the most compatible and produces decent
quality.

‘mpeg2_aac_low’

Equivalent to -profile:a aac_low -aac_pns 0. PNS was introduced with the MPEG4
specifications.

‘aac_ltp’

Long term prediction profile, is enabled by and will enable the aac_ltp option. Introduced in
MPEG4.

‘aac_main’

Main-type prediction profile, is enabled by and will enable the aac_pred option. Introduced in
MPEG2.

If this option is unspecified it is set to ‘aac_low’.

15.2 ac3 and ac3_fixed# TOC

AC-3 audio encoders.

These encoders implement part of ATSC A/52:2010 and ETSI TS 102 366, as well as the undocumented
RealAudio 3 (a.k.a. dnet).

The ac3 encoder uses floating-point math, while the ac3_fixed encoder only uses fixed-point integer math.
This does not mean that one is always faster, just that one or the other may be better suited to a particular
system. The floating-point encoder will generally produce better quality audio for a given bitrate. The
ac3_fixed encoder is not the default codec for any of the output formats, so it must be specified explicitly
using the option -acodec ac3_fixed in order to use it.

15.2.1 AC-3 Metadata# TOC

The AC-3 metadata options are used to set parameters that describe the audio, but in most cases do not
affect the audio encoding itself. Some of the options do directly affect or influence the decoding and
playback of the resulting bitstream, while others are just for informational purposes. A few of the options
will add bits to the output stream that could otherwise be used for audio data, and will thus affect the
quality of the output. Those will be indicated accordingly with a note in the option list below.

These parameters are described in detail in several publicly-available documents.

A/52:2010 - Digital Audio Compression (AC-3) (E-AC-3) Standard
A/54 - Guide to the Use of the ATSC Digital Television Standard
Dolby Metadata Guide
Dolby Digital Professional Encoding Guidelines

http://www.atsc.org/cms/standards/a_52-2010.pdf
http://www.atsc.org/cms/standards/a_54a_with_corr_1.pdf
http://www.dolby.com/uploadedFiles/zz-_Shared_Assets/English_PDFs/Professional/18_Metadata.Guide.pdf
http://www.dolby.com/uploadedFiles/zz-_Shared_Assets/English_PDFs/Professional/46_DDEncodingGuidelines.pdf

15.2.1.1 Metadata Control Options# TOC

-per_frame_metadata boolean

Allow Per-Frame Metadata. Specifies if the encoder should check for changing metadata for each
frame.

0

The metadata values set at initialization will be used for every frame in the stream. (default)

1

Metadata values can be changed before encoding each frame.

15.2.1.2 Downmix Levels# TOC

-center_mixlev level

Center Mix Level. The amount of gain the decoder should apply to the center channel when
downmixing to stereo. This field will only be written to the bitstream if a center channel is present.
The value is specified as a scale factor. There are 3 valid values:

0.707

Apply -3dB gain

0.595

Apply -4.5dB gain (default)

0.500

Apply -6dB gain

-surround_mixlev level

Surround Mix Level. The amount of gain the decoder should apply to the surround channel(s) when
downmixing to stereo. This field will only be written to the bitstream if one or more surround
channels are present. The value is specified as a scale factor. There are 3 valid values:

0.707

Apply -3dB gain

0.500

Apply -6dB gain (default)

0.000

Silence Surround Channel(s)

15.2.1.3 Audio Production Information# TOC

Audio Production Information is optional information describing the mixing environment. Either none or
both of the fields are written to the bitstream.

-mixing_level number

Mixing Level. Specifies peak sound pressure level (SPL) in the production environment when the
mix was mastered. Valid values are 80 to 111, or -1 for unknown or not indicated. The default value
is -1, but that value cannot be used if the Audio Production Information is written to the bitstream.
Therefore, if the room_type option is not the default value, the mixing_level option must not
be -1.

-room_type type

Room Type. Describes the equalization used during the final mixing session at the studio or on the
dubbing stage. A large room is a dubbing stage with the industry standard X-curve equalization; a
small room has flat equalization. This field will not be written to the bitstream if both the
mixing_level option and the room_type option have the default values.

0
notindicated

Not Indicated (default)

1
large

Large Room

2
small

Small Room

15.2.1.4 Other Metadata Options# TOC

-copyright boolean

Copyright Indicator. Specifies whether a copyright exists for this audio.

0
off

No Copyright Exists (default)

1
on

Copyright Exists

-dialnorm value

Dialogue Normalization. Indicates how far the average dialogue level of the program is below digital
100% full scale (0 dBFS). This parameter determines a level shift during audio reproduction that sets
the average volume of the dialogue to a preset level. The goal is to match volume level between
program sources. A value of -31dB will result in no volume level change, relative to the source
volume, during audio reproduction. Valid values are whole numbers in the range -31 to -1, with -31
being the default.

-dsur_mode mode

Dolby Surround Mode. Specifies whether the stereo signal uses Dolby Surround (Pro Logic). This
field will only be written to the bitstream if the audio stream is stereo. Using this option does NOT

mean the encoder will actually apply Dolby Surround processing.

0
notindicated

Not Indicated (default)

1
off

Not Dolby Surround Encoded

2
on

Dolby Surround Encoded

-original boolean

Original Bit Stream Indicator. Specifies whether this audio is from the original source and not a copy.

0
off

Not Original Source

1
on

Original Source (default)

15.2.2 Extended Bitstream Information# TOC

The extended bitstream options are part of the Alternate Bit Stream Syntax as specified in Annex D of the
A/52:2010 standard. It is grouped into 2 parts. If any one parameter in a group is specified, all values in
that group will be written to the bitstream. Default values are used for those that are written but have not
been specified. If the mixing levels are written, the decoder will use these values instead of the ones
specified in the center_mixlev and surround_mixlev options if it supports the Alternate Bit
Stream Syntax.

15.2.2.1 Extended Bitstream Information - Part 1# TOC

-dmix_mode mode

Preferred Stereo Downmix Mode. Allows the user to select either Lt/Rt (Dolby Surround) or Lo/Ro
(normal stereo) as the preferred stereo downmix mode.

0
notindicated

Not Indicated (default)

1
ltrt

Lt/Rt Downmix Preferred

2
loro

Lo/Ro Downmix Preferred

-ltrt_cmixlev level

Lt/Rt Center Mix Level. The amount of gain the decoder should apply to the center channel when
downmixing to stereo in Lt/Rt mode.

1.414

Apply +3dB gain

1.189

Apply +1.5dB gain

1.000

Apply 0dB gain

0.841

Apply -1.5dB gain

0.707

Apply -3.0dB gain

0.595

Apply -4.5dB gain (default)

0.500

Apply -6.0dB gain

0.000

Silence Center Channel

-ltrt_surmixlev level

Lt/Rt Surround Mix Level. The amount of gain the decoder should apply to the surround channel(s)
when downmixing to stereo in Lt/Rt mode.

0.841

Apply -1.5dB gain

0.707

Apply -3.0dB gain

0.595

Apply -4.5dB gain

0.500

Apply -6.0dB gain (default)

0.000

Silence Surround Channel(s)

-loro_cmixlev level

Lo/Ro Center Mix Level. The amount of gain the decoder should apply to the center channel when
downmixing to stereo in Lo/Ro mode.

1.414

Apply +3dB gain

1.189

Apply +1.5dB gain

1.000

Apply 0dB gain

0.841

Apply -1.5dB gain

0.707

Apply -3.0dB gain

0.595

Apply -4.5dB gain (default)

0.500

Apply -6.0dB gain

0.000

Silence Center Channel

-loro_surmixlev level

Lo/Ro Surround Mix Level. The amount of gain the decoder should apply to the surround channel(s)
when downmixing to stereo in Lo/Ro mode.

0.841

Apply -1.5dB gain

0.707

Apply -3.0dB gain

0.595

Apply -4.5dB gain

0.500

Apply -6.0dB gain (default)

0.000

Silence Surround Channel(s)

15.2.2.2 Extended Bitstream Information - Part 2# TOC

-dsurex_mode mode

Dolby Surround EX Mode. Indicates whether the stream uses Dolby Surround EX (7.1 matrixed to
5.1). Using this option does NOT mean the encoder will actually apply Dolby Surround EX
processing.

0
notindicated

Not Indicated (default)

1
on

Dolby Surround EX Off

2
off

Dolby Surround EX On

-dheadphone_mode mode

Dolby Headphone Mode. Indicates whether the stream uses Dolby Headphone encoding
(multi-channel matrixed to 2.0 for use with headphones). Using this option does NOT mean the
encoder will actually apply Dolby Headphone processing.

0

notindicated

Not Indicated (default)

1
on

Dolby Headphone Off

2
off

Dolby Headphone On

-ad_conv_type type

A/D Converter Type. Indicates whether the audio has passed through HDCD A/D conversion.

0
standard

Standard A/D Converter (default)

1
hdcd

HDCD A/D Converter

15.2.3 Other AC-3 Encoding Options# TOC

-stereo_rematrixing boolean

Stereo Rematrixing. Enables/Disables use of rematrixing for stereo input. This is an optional AC-3
feature that increases quality by selectively encoding the left/right channels as mid/side. This option
is enabled by default, and it is highly recommended that it be left as enabled except for testing
purposes.

cutoff frequency

Set lowpass cutoff frequency. If unspecified, the encoder selects a default determined by various
other encoding parameters.

15.2.4 Floating-Point-Only AC-3 Encoding Options# TOC

These options are only valid for the floating-point encoder and do not exist for the fixed-point encoder due
to the corresponding features not being implemented in fixed-point.

-channel_coupling boolean

Enables/Disables use of channel coupling, which is an optional AC-3 feature that increases quality by
combining high frequency information from multiple channels into a single channel. The per-channel
high frequency information is sent with less accuracy in both the frequency and time domains. This
allows more bits to be used for lower frequencies while preserving enough information to reconstruct
the high frequencies. This option is enabled by default for the floating-point encoder and should
generally be left as enabled except for testing purposes or to increase encoding speed.

-1
auto

Selected by Encoder (default)

0
off

Disable Channel Coupling

1
on

Enable Channel Coupling

-cpl_start_band number

Coupling Start Band. Sets the channel coupling start band, from 1 to 15. If a value higher than the
bandwidth is used, it will be reduced to 1 less than the coupling end band. If auto is used, the start
band will be determined by the encoder based on the bit rate, sample rate, and channel layout. This
option has no effect if channel coupling is disabled.

-1
auto

Selected by Encoder (default)

15.3 flac# TOC

FLAC (Free Lossless Audio Codec) Encoder

15.3.1 Options# TOC

The following options are supported by FFmpeg’s flac encoder.

compression_level

Sets the compression level, which chooses defaults for many other options if they are not set
explicitly. Valid values are from 0 to 12, 5 is the default.

frame_size

Sets the size of the frames in samples per channel.

lpc_coeff_precision

Sets the LPC coefficient precision, valid values are from 1 to 15, 15 is the default.

lpc_type

Sets the first stage LPC algorithm

‘none’

LPC is not used

‘fixed’

fixed LPC coefficients

‘levinson’
‘cholesky’

lpc_passes

Number of passes to use for Cholesky factorization during LPC analysis

min_partition_order

The minimum partition order

max_partition_order

The maximum partition order

prediction_order_method
‘estimation’
‘2level’
‘4level’
‘8level’
‘search’

Bruteforce search

‘log’
ch_mode

Channel mode

‘auto’

The mode is chosen automatically for each frame

‘indep’

Channels are independently coded

‘left_side’
‘right_side’
‘mid_side’

exact_rice_parameters

Chooses if rice parameters are calculated exactly or approximately. if set to 1 then they are chosen
exactly, which slows the code down slightly and improves compression slightly.

multi_dim_quant

Multi Dimensional Quantization. If set to 1 then a 2nd stage LPC algorithm is applied after the first
stage to finetune the coefficients. This is quite slow and slightly improves compression.

15.4 opus# TOC

Opus encoder.

This is a native FFmpeg encoder for the Opus format. Currently its in development and only implements
the CELT part of the codec. Its quality is usually worse and at best is equal to the libopus encoder.

15.4.1 Options# TOC

b

Set bit rate in bits/s. If unspecified it uses the number of channels and the layout to make a good
guess.

opus_delay

Sets the maximum delay in milliseconds. Lower delays than 20ms will very quickly decrease quality.

15.5 libfdk_aac# TOC

libfdk-aac AAC (Advanced Audio Coding) encoder wrapper.

The libfdk-aac library is based on the Fraunhofer FDK AAC code from the Android project.

Requires the presence of the libfdk-aac headers and library during configuration. You need to explicitly
configure the build with --enable-libfdk-aac. The library is also incompatible with GPL, so if you
allow the use of GPL, you should configure with --enable-gpl --enable-nonfree
--enable-libfdk-aac.

This encoder is considered to produce output on par or worse at 128kbps to the the native FFmpeg AAC
encoder but can often produce better sounding audio at identical or lower bitrates and has support for the
AAC-HE profiles.

VBR encoding, enabled through the vbr or flags +qscale options, is experimental and only works
with some combinations of parameters.

Support for encoding 7.1 audio is only available with libfdk-aac 0.1.3 or higher.

For more information see the fdk-aac project at http://sourceforge.net/p/opencore-amr/fdk-aac/.

15.5.1 Options# TOC

The following options are mapped on the shared FFmpeg codec options.

b

Set bit rate in bits/s. If the bitrate is not explicitly specified, it is automatically set to a suitable value
depending on the selected profile.

In case VBR mode is enabled the option is ignored.

ar

Set audio sampling rate (in Hz).

channels

Set the number of audio channels.

flags +qscale

Enable fixed quality, VBR (Variable Bit Rate) mode. Note that VBR is implicitly enabled when the
vbr value is positive.

cutoff

Set cutoff frequency. If not specified (or explicitly set to 0) it will use a value automatically
computed by the library. Default value is 0.

profile

http://sourceforge.net/p/opencore-amr/fdk-aac/

Set audio profile.

The following profiles are recognized:

‘aac_low’

Low Complexity AAC (LC)

‘aac_he’

High Efficiency AAC (HE-AAC)

‘aac_he_v2’

High Efficiency AAC version 2 (HE-AACv2)

‘aac_ld’

Low Delay AAC (LD)

‘aac_eld’

Enhanced Low Delay AAC (ELD)

If not specified it is set to ‘aac_low’.

The following are private options of the libfdk_aac encoder.

afterburner

Enable afterburner feature if set to 1, disabled if set to 0. This improves the quality but also the
required processing power.

Default value is 1.

eld_sbr

Enable SBR (Spectral Band Replication) for ELD if set to 1, disabled if set to 0.

Default value is 0.

signaling

Set SBR/PS signaling style.

It can assume one of the following values:

‘default’

choose signaling implicitly (explicit hierarchical by default, implicit if global header is disabled)

‘implicit’

implicit backwards compatible signaling

‘explicit_sbr’

explicit SBR, implicit PS signaling

‘explicit_hierarchical’

explicit hierarchical signaling

Default value is ‘default’.

latm

Output LATM/LOAS encapsulated data if set to 1, disabled if set to 0.

Default value is 0.

header_period

Set StreamMuxConfig and PCE repetition period (in frames) for sending in-band configuration
buffers within LATM/LOAS transport layer.

Must be a 16-bits non-negative integer.

Default value is 0.

vbr

Set VBR mode, from 1 to 5. 1 is lowest quality (though still pretty good) and 5 is highest quality. A
value of 0 will disable VBR, and CBR (Constant Bit Rate) is enabled.

Currently only the ‘aac_low’ profile supports VBR encoding.

VBR modes 1-5 correspond to roughly the following average bit rates:

‘1’

32 kbps/channel

‘2’

40 kbps/channel

‘3’

48-56 kbps/channel

‘4’

64 kbps/channel

‘5’

about 80-96 kbps/channel

Default value is 0.

15.5.2 Examples# TOC

Use ffmpeg to convert an audio file to VBR AAC in an M4A (MP4) container:

ffmpeg -i input.wav -codec:a libfdk_aac -vbr 3 output.m4a

Use ffmpeg to convert an audio file to CBR 64k kbps AAC, using the High-Efficiency AAC
profile:

ffmpeg -i input.wav -c:a libfdk_aac -profile:a aac_he -b:a 64k output.m4a

15.6 libmp3lame# TOC

LAME (Lame Ain’t an MP3 Encoder) MP3 encoder wrapper.

Requires the presence of the libmp3lame headers and library during configuration. You need to explicitly
configure the build with --enable-libmp3lame.

See libshine for a fixed-point MP3 encoder, although with a lower quality.

15.6.1 Options# TOC

The following options are supported by the libmp3lame wrapper. The lame-equivalent of the options are
listed in parentheses.

b (-b)

Set bitrate expressed in bits/s for CBR or ABR. LAME bitrate is expressed in kilobits/s.

q (-V)

Set constant quality setting for VBR. This option is valid only using the ffmpeg command-line tool.
For library interface users, use global_quality.

compression_level (-q)

Set algorithm quality. Valid arguments are integers in the 0-9 range, with 0 meaning highest quality
but slowest, and 9 meaning fastest while producing the worst quality.

cutoff (--lowpass)

Set lowpass cutoff frequency. If unspecified, the encoder dynamically adjusts the cutoff.

reservoir

Enable use of bit reservoir when set to 1. Default value is 1. LAME has this enabled by default, but
can be overridden by use --nores option.

joint_stereo (-m j)

Enable the encoder to use (on a frame by frame basis) either L/R stereo or mid/side stereo. Default
value is 1.

abr (--abr)

Enable the encoder to use ABR when set to 1. The lame --abr sets the target bitrate, while this
options only tells FFmpeg to use ABR still relies on b to set bitrate.

15.7 libopencore-amrnb# TOC

OpenCORE Adaptive Multi-Rate Narrowband encoder.

Requires the presence of the libopencore-amrnb headers and library during configuration. You need to
explicitly configure the build with --enable-libopencore-amrnb --enable-version3.

This is a mono-only encoder. Officially it only supports 8000Hz sample rate, but you can override it by
setting strict to ‘unofficial’ or lower.

15.7.1 Options# TOC

b

Set bitrate in bits per second. Only the following bitrates are supported, otherwise libavcodec will
round to the nearest valid bitrate.

4750
5150
5900
6700
7400
7950

10200
12200

dtx

Allow discontinuous transmission (generate comfort noise) when set to 1. The default value is 0
(disabled).

15.8 libopus# TOC

libopus Opus Interactive Audio Codec encoder wrapper.

Requires the presence of the libopus headers and library during configuration. You need to explicitly
configure the build with --enable-libopus.

15.8.1 Option Mapping# TOC

Most libopus options are modelled after the opusenc utility from opus-tools. The following is an option
mapping chart describing options supported by the libopus wrapper, and their opusenc-equivalent in
parentheses.

b (bitrate)

Set the bit rate in bits/s. FFmpeg’s b option is expressed in bits/s, while opusenc’s bitrate in
kilobits/s.

vbr (vbr, hard-cbr, and cvbr)

Set VBR mode. The FFmpeg vbr option has the following valid arguments, with the opusenc
equivalent options in parentheses:

‘off (hard-cbr)’

Use constant bit rate encoding.

‘on (vbr)’

Use variable bit rate encoding (the default).

‘constrained (cvbr)’

Use constrained variable bit rate encoding.

compression_level (comp)

Set encoding algorithm complexity. Valid options are integers in the 0-10 range. 0 gives the fastest
encodes but lower quality, while 10 gives the highest quality but slowest encoding. The default is 10.

frame_duration (framesize)

Set maximum frame size, or duration of a frame in milliseconds. The argument must be exactly the
following: 2.5, 5, 10, 20, 40, 60. Smaller frame sizes achieve lower latency but less quality at a given
bitrate. Sizes greater than 20ms are only interesting at fairly low bitrates. The default is 20ms.

packet_loss (expect-loss)

Set expected packet loss percentage. The default is 0.

application (N.A.)

Set intended application type. Valid options are listed below:

‘voip’

Favor improved speech intelligibility.

‘audio’

Favor faithfulness to the input (the default).

‘lowdelay’

Restrict to only the lowest delay modes.

cutoff (N.A.)

Set cutoff bandwidth in Hz. The argument must be exactly one of the following: 4000, 6000, 8000,
12000, or 20000, corresponding to narrowband, mediumband, wideband, super wideband, and
fullband respectively. The default is 0 (cutoff disabled).

mapping_family (mapping_family)

Set channel mapping family to be used by the encoder. The default value of -1 uses mapping family 0
for mono and stereo inputs, and mapping family 1 otherwise. The default also disables the surround
masking and LFE bandwidth optimzations in libopus, and requires that the input contains 8 channels
or fewer.

Other values include 0 for mono and stereo, 1 for surround sound with masking and LFE bandwidth
optimizations, and 255 for independent streams with an unspecified channel layout.

15.9 libshine# TOC

Shine Fixed-Point MP3 encoder wrapper.

Shine is a fixed-point MP3 encoder. It has a far better performance on platforms without an FPU, e.g.
armel CPUs, and some phones and tablets. However, as it is more targeted on performance than quality, it
is not on par with LAME and other production-grade encoders quality-wise. Also, according to the

project’s homepage, this encoder may not be free of bugs as the code was written a long time ago and the
project was dead for at least 5 years.

This encoder only supports stereo and mono input. This is also CBR-only.

The original project (last updated in early 2007) is at http://sourceforge.net/projects/libshine-fxp/. We only
support the updated fork by the Savonet/Liquidsoap project at https://github.com/savonet/shine.

Requires the presence of the libshine headers and library during configuration. You need to explicitly
configure the build with --enable-libshine.

See also libmp3lame.

15.9.1 Options# TOC

The following options are supported by the libshine wrapper. The shineenc-equivalent of the options
are listed in parentheses.

b (-b)

Set bitrate expressed in bits/s for CBR. shineenc -b option is expressed in kilobits/s.

15.10 libtwolame# TOC

TwoLAME MP2 encoder wrapper.

Requires the presence of the libtwolame headers and library during configuration. You need to explicitly
configure the build with --enable-libtwolame.

15.10.1 Options# TOC

The following options are supported by the libtwolame wrapper. The twolame-equivalent options follow
the FFmpeg ones and are in parentheses.

b (-b)

Set bitrate expressed in bits/s for CBR. twolame b option is expressed in kilobits/s. Default value is
128k.

q (-V)

Set quality for experimental VBR support. Maximum value range is from -50 to 50, useful range is
from -10 to 10. The higher the value, the better the quality. This option is valid only using the
ffmpeg command-line tool. For library interface users, use global_quality.

mode (--mode)

http://sourceforge.net/projects/libshine-fxp/
https://github.com/savonet/shine

Set the mode of the resulting audio. Possible values:

‘auto’

Choose mode automatically based on the input. This is the default.

‘stereo’

Stereo

‘joint_stereo’

Joint stereo

‘dual_channel’

Dual channel

‘mono’

Mono

psymodel (--psyc-mode)

Set psychoacoustic model to use in encoding. The argument must be an integer between -1 and 4,
inclusive. The higher the value, the better the quality. The default value is 3.

energy_levels (--energy)

Enable energy levels extensions when set to 1. The default value is 0 (disabled).

error_protection (--protect)

Enable CRC error protection when set to 1. The default value is 0 (disabled).

copyright (--copyright)

Set MPEG audio copyright flag when set to 1. The default value is 0 (disabled).

original (--original)

Set MPEG audio original flag when set to 1. The default value is 0 (disabled).

15.11 libvo-amrwbenc# TOC

VisualOn Adaptive Multi-Rate Wideband encoder.

Requires the presence of the libvo-amrwbenc headers and library during configuration. You need to
explicitly configure the build with --enable-libvo-amrwbenc --enable-version3.

This is a mono-only encoder. Officially it only supports 16000Hz sample rate, but you can override it by
setting strict to ‘unofficial’ or lower.

15.11.1 Options# TOC

b

Set bitrate in bits/s. Only the following bitrates are supported, otherwise libavcodec will round to the
nearest valid bitrate.

‘6600’
‘8850’
‘12650’
‘14250’
‘15850’
‘18250’
‘19850’
‘23050’
‘23850’

dtx

Allow discontinuous transmission (generate comfort noise) when set to 1. The default value is 0
(disabled).

15.12 libvorbis# TOC

libvorbis encoder wrapper.

Requires the presence of the libvorbisenc headers and library during configuration. You need to explicitly
configure the build with --enable-libvorbis.

15.12.1 Options# TOC

The following options are supported by the libvorbis wrapper. The oggenc-equivalent of the options are
listed in parentheses.

To get a more accurate and extensive documentation of the libvorbis options, consult the libvorbisenc’s
and oggenc’s documentations. See http://xiph.org/vorbis/, http://wiki.xiph.org/Vorbis-tools, and
oggenc(1).

b (-b)

Set bitrate expressed in bits/s for ABR. oggenc -b is expressed in kilobits/s.

q (-q)

http://xiph.org/vorbis/
http://wiki.xiph.org/Vorbis-tools

Set constant quality setting for VBR. The value should be a float number in the range of -1.0 to 10.0.
The higher the value, the better the quality. The default value is ‘3.0’.

This option is valid only using the ffmpeg command-line tool. For library interface users, use
global_quality.

cutoff (--advanced-encode-option lowpass_frequency=N)

Set cutoff bandwidth in Hz, a value of 0 disables cutoff. oggenc’s related option is expressed in
kHz. The default value is ‘0’ (cutoff disabled).

minrate (-m)

Set minimum bitrate expressed in bits/s. oggenc -m is expressed in kilobits/s.

maxrate (-M)

Set maximum bitrate expressed in bits/s. oggenc -M is expressed in kilobits/s. This only has effect
on ABR mode.

iblock (--advanced-encode-option impulse_noisetune=N)

Set noise floor bias for impulse blocks. The value is a float number from -15.0 to 0.0. A negative bias
instructs the encoder to pay special attention to the crispness of transients in the encoded audio. The
tradeoff for better transient response is a higher bitrate.

15.13 libwavpack# TOC

A wrapper providing WavPack encoding through libwavpack.

Only lossless mode using 32-bit integer samples is supported currently.

Requires the presence of the libwavpack headers and library during configuration. You need to explicitly
configure the build with --enable-libwavpack.

Note that a libavcodec-native encoder for the WavPack codec exists so users can encode audios with this
codec without using this encoder. See wavpackenc.

15.13.1 Options# TOC

wavpack command line utility’s corresponding options are listed in parentheses, if any.

frame_size (--blocksize)

Default is 32768.

compression_level

Set speed vs. compression tradeoff. Acceptable arguments are listed below:

‘0 (-f)’

Fast mode.

‘1’

Normal (default) settings.

‘2 (-h)’

High quality.

‘3 (-hh)’

Very high quality.

‘4-8 (-hh -xEXTRAPROC)’

Same as ‘3’, but with extra processing enabled.

‘4’ is the same as -x2 and ‘8’ is the same as -x6.

15.14 mjpeg# TOC

Motion JPEG encoder.

15.14.1 Options# TOC

huffman

Set the huffman encoding strategy. Possible values:

‘default’

Use the default huffman tables. This is the default strategy.

‘optimal’

Compute and use optimal huffman tables.

15.15 wavpack# TOC

WavPack lossless audio encoder.

This is a libavcodec-native WavPack encoder. There is also an encoder based on libwavpack, but there is
virtually no reason to use that encoder.

See also libwavpack.

15.15.1 Options# TOC

The equivalent options for wavpack command line utility are listed in parentheses.

15.15.1.1 Shared options# TOC

The following shared options are effective for this encoder. Only special notes about this particular
encoder will be documented here. For the general meaning of the options, see the Codec Options chapter.

frame_size (--blocksize)

For this encoder, the range for this option is between 128 and 131072. Default is automatically
decided based on sample rate and number of channel.

For the complete formula of calculating default, see libavcodec/wavpackenc.c.

compression_level (-f, -h, -hh, and -x)

This option’s syntax is consistent with libwavpack’s.

15.15.1.2 Private options# TOC

joint_stereo (-j)

Set whether to enable joint stereo. Valid values are:

‘on (1)’

Force mid/side audio encoding.

‘off (0)’

Force left/right audio encoding.

‘auto’

Let the encoder decide automatically.

optimize_mono

Set whether to enable optimization for mono. This option is only effective for non-mono streams.
Available values:

‘on’

enabled

‘off’

disabled

16 Video Encoders# TOC

A description of some of the currently available video encoders follows.

16.1 Hap# TOC

Vidvox Hap video encoder.

16.1.1 Options# TOC

format integer

Specifies the Hap format to encode.

hap
hap_alpha
hap_q

Default value is hap.

chunks integer

Specifies the number of chunks to split frames into, between 1 and 64. This permits multithreaded
decoding of large frames, potentially at the cost of data-rate. The encoder may modify this value to
divide frames evenly.

Default value is 1.

compressor integer

Specifies the second-stage compressor to use. If set to none, chunks will be limited to 1, as
chunked uncompressed frames offer no benefit.

none
snappy

Default value is snappy.

16.2 jpeg2000# TOC

The native jpeg 2000 encoder is lossy by default, the -q:v option can be used to set the encoding quality.
Lossless encoding can be selected with -pred 1.

16.2.1 Options# TOC

format

Can be set to either j2k or jp2 (the default) that makes it possible to store non-rgb pix_fmts.

16.3 libkvazaar# TOC

Kvazaar H.265/HEVC encoder.

Requires the presence of the libkvazaar headers and library during configuration. You need to explicitly
configure the build with --enable-libkvazaar.

16.3.1 Options# TOC

b

Set target video bitrate in bit/s and enable rate control.

kvazaar-params

Set kvazaar parameters as a list of name=value pairs separated by commas (,). See kvazaar
documentation for a list of options.

16.4 libopenh264# TOC

Cisco libopenh264 H.264/MPEG-4 AVC encoder wrapper.

This encoder requires the presence of the libopenh264 headers and library during configuration. You need
to explicitly configure the build with --enable-libopenh264. The library is detected using
pkg-config.

For more information about the library see http://www.openh264.org.

16.4.1 Options# TOC

The following FFmpeg global options affect the configurations of the libopenh264 encoder.

b

Set the bitrate (as a number of bits per second).

http://www.openh264.org/

g

Set the GOP size.

maxrate

Set the max bitrate (as a number of bits per second).

flags +global_header

Set global header in the bitstream.

slices

Set the number of slices, used in parallelized encoding. Default value is 0. This is only used when
slice_mode is set to ‘fixed’.

slice_mode

Set slice mode. Can assume one of the following possible values:

‘fixed’

a fixed number of slices

‘rowmb’

one slice per row of macroblocks

‘auto’

automatic number of slices according to number of threads

‘dyn’

dynamic slicing

Default value is ‘auto’.

loopfilter

Enable loop filter, if set to 1 (automatically enabled). To disable set a value of 0.

profile

Set profile restrictions. If set to the value of ‘main’ enable CABAC (set the
SEncParamExt.iEntropyCodingModeFlag flag to 1).

max_nal_size

Set maximum NAL size in bytes.

allow_skip_frames

Allow skipping frames to hit the target bitrate if set to 1.

16.5 libtheora# TOC

libtheora Theora encoder wrapper.

Requires the presence of the libtheora headers and library during configuration. You need to explicitly
configure the build with --enable-libtheora.

For more information about the libtheora project see http://www.theora.org/.

16.5.1 Options# TOC

The following global options are mapped to internal libtheora options which affect the quality and the
bitrate of the encoded stream.

b

Set the video bitrate in bit/s for CBR (Constant Bit Rate) mode. In case VBR (Variable Bit Rate)
mode is enabled this option is ignored.

flags

Used to enable constant quality mode (VBR) encoding through the qscale flag, and to enable the
pass1 and pass2 modes.

g

Set the GOP size.

global_quality

Set the global quality as an integer in lambda units.

Only relevant when VBR mode is enabled with flags +qscale. The value is converted to QP
units by dividing it by FF_QP2LAMBDA, clipped in the [0 - 10] range, and then multiplied by 6.3 to
get a value in the native libtheora range [0-63]. A higher value corresponds to a higher quality.

q

Enable VBR mode when set to a non-negative value, and set constant quality value as a double
floating point value in QP units.

http://www.theora.org/

The value is clipped in the [0-10] range, and then multiplied by 6.3 to get a value in the native
libtheora range [0-63].

This option is valid only using the ffmpeg command-line tool. For library interface users, use
global_quality.

16.5.2 Examples# TOC

Set maximum constant quality (VBR) encoding with ffmpeg:

ffmpeg -i INPUT -codec:v libtheora -q:v 10 OUTPUT.ogg

Use ffmpeg to convert a CBR 1000 kbps Theora video stream:

ffmpeg -i INPUT -codec:v libtheora -b:v 1000k OUTPUT.ogg

16.6 libvpx# TOC

VP8/VP9 format supported through libvpx.

Requires the presence of the libvpx headers and library during configuration. You need to explicitly
configure the build with --enable-libvpx.

16.6.1 Options# TOC

The following options are supported by the libvpx wrapper. The vpxenc-equivalent options or values are
listed in parentheses for easy migration.

To reduce the duplication of documentation, only the private options and some others requiring special
attention are documented here. For the documentation of the undocumented generic options, see the Codec
Options chapter.

To get more documentation of the libvpx options, invoke the command ffmpeg -h
encoder=libvpx, ffmpeg -h encoder=libvpx-vp9 or vpxenc --help. Further
information is available in the libvpx API documentation.

b (target-bitrate)

Set bitrate in bits/s. Note that FFmpeg’s b option is expressed in bits/s, while vpxenc’s
target-bitrate is in kilobits/s.

g (kf-max-dist)
keyint_min (kf-min-dist)
qmin (min-q)
qmax (max-q)
bufsize (buf-sz, buf-optimal-sz)

Set ratecontrol buffer size (in bits). Note vpxenc’s options are specified in milliseconds, the libvpx
wrapper converts this value as follows: buf-sz = bufsize * 1000 / bitrate,
buf-optimal-sz = bufsize * 1000 / bitrate * 5 / 6.

rc_init_occupancy (buf-initial-sz)

Set number of bits which should be loaded into the rc buffer before decoding starts. Note vpxenc’s
option is specified in milliseconds, the libvpx wrapper converts this value as follows:
rc_init_occupancy * 1000 / bitrate.

undershoot-pct

Set datarate undershoot (min) percentage of the target bitrate.

overshoot-pct

Set datarate overshoot (max) percentage of the target bitrate.

skip_threshold (drop-frame)
qcomp (bias-pct)
maxrate (maxsection-pct)

Set GOP max bitrate in bits/s. Note vpxenc’s option is specified as a percentage of the target bitrate,
the libvpx wrapper converts this value as follows: (maxrate * 100 / bitrate).

minrate (minsection-pct)

Set GOP min bitrate in bits/s. Note vpxenc’s option is specified as a percentage of the target bitrate,
the libvpx wrapper converts this value as follows: (minrate * 100 / bitrate).

minrate, maxrate, b end-usage=cbr

(minrate == maxrate == bitrate).

crf (end-usage=cq, cq-level)
tune (tune)

‘psnr (psnr)’
‘ssim (ssim)’

quality, deadline (deadline)
‘best’

Use best quality deadline. Poorly named and quite slow, this option should be avoided as it may
give worse quality output than good.

‘good’

Use good quality deadline. This is a good trade-off between speed and quality when used with
the cpu-used option.

‘realtime’

Use realtime quality deadline.

speed, cpu-used (cpu-used)

Set quality/speed ratio modifier. Higher values speed up the encode at the cost of quality.

nr (noise-sensitivity)
static-thresh

Set a change threshold on blocks below which they will be skipped by the encoder.

slices (token-parts)

Note that FFmpeg’s slices option gives the total number of partitions, while vpxenc’s
token-parts is given as log2(partitions).

max-intra-rate

Set maximum I-frame bitrate as a percentage of the target bitrate. A value of 0 means unlimited.

force_key_frames

VPX_EFLAG_FORCE_KF

Alternate reference frame related
auto-alt-ref

Enable use of alternate reference frames (2-pass only).

arnr-max-frames

Set altref noise reduction max frame count.

arnr-type

Set altref noise reduction filter type: backward, forward, centered.

arnr-strength

Set altref noise reduction filter strength.

rc-lookahead, lag-in-frames (lag-in-frames)

Set number of frames to look ahead for frametype and ratecontrol.

error-resilient

Enable error resiliency features.

VP9-specific options
lossless

Enable lossless mode.

tile-columns

Set number of tile columns to use. Note this is given as log2(tile_columns). For
example, 8 tile columns would be requested by setting the tile-columns option to 3.

tile-rows

Set number of tile rows to use. Note this is given as log2(tile_rows). For example, 4 tile
rows would be requested by setting the tile-rows option to 2.

frame-parallel

Enable frame parallel decodability features.

aq-mode

Set adaptive quantization mode (0: off (default), 1: variance 2: complexity, 3: cyclic refresh, 4:
equator360).

colorspace color-space

Set input color space. The VP9 bitstream supports signaling the following colorspaces:

‘rgb’ sRGB
‘bt709’ bt709
‘unspecified’ unknown
‘bt470bg’ bt601
‘smpte170m’ smpte170
‘smpte240m’ smpte240
‘bt2020_ncl’ bt2020

row-mt boolean

Enable row based multi-threading.

tune-content

Set content type: default (0), screen (1), film (2).

corpus-complexity

Corpus VBR mode is a variant of standard VBR where the complexity distribution midpoint is
passed in rather than calculated for a specific clip or chunk.

The valid range is [0, 10000]. 0 (default) uses standard VBR.

For more information about libvpx see: http://www.webmproject.org/

16.7 libwebp# TOC

libwebp WebP Image encoder wrapper

libwebp is Google’s official encoder for WebP images. It can encode in either lossy or lossless mode.
Lossy images are essentially a wrapper around a VP8 frame. Lossless images are a separate codec
developed by Google.

16.7.1 Pixel Format# TOC

Currently, libwebp only supports YUV420 for lossy and RGB for lossless due to limitations of the format
and libwebp. Alpha is supported for either mode. Because of API limitations, if RGB is passed in when
encoding lossy or YUV is passed in for encoding lossless, the pixel format will automatically be converted
using functions from libwebp. This is not ideal and is done only for convenience.

16.7.2 Options# TOC

-lossless boolean

Enables/Disables use of lossless mode. Default is 0.

-compression_level integer

For lossy, this is a quality/speed tradeoff. Higher values give better quality for a given size at the cost
of increased encoding time. For lossless, this is a size/speed tradeoff. Higher values give smaller size
at the cost of increased encoding time. More specifically, it controls the number of extra algorithms
and compression tools used, and varies the combination of these tools. This maps to the method

option in libwebp. The valid range is 0 to 6. Default is 4.

-qscale float

For lossy encoding, this controls image quality, 0 to 100. For lossless encoding, this controls the
effort and time spent at compressing more. The default value is 75. Note that for usage via
libavcodec, this option is called global_quality and must be multiplied by FF_QP2LAMBDA.

-preset type

Configuration preset. This does some automatic settings based on the general type of the image.

none

http://www.webmproject.org/

Do not use a preset.

default

Use the encoder default.

picture

Digital picture, like portrait, inner shot

photo

Outdoor photograph, with natural lighting

drawing

Hand or line drawing, with high-contrast details

icon

Small-sized colorful images

text

Text-like

16.8 libx264, libx264rgb# TOC

x264 H.264/MPEG-4 AVC encoder wrapper.

This encoder requires the presence of the libx264 headers and library during configuration. You need to
explicitly configure the build with --enable-libx264.

libx264 supports an impressive number of features, including 8x8 and 4x4 adaptive spatial transform,
adaptive B-frame placement, CAVLC/CABAC entropy coding, interlacing (MBAFF), lossless mode, psy
optimizations for detail retention (adaptive quantization, psy-RD, psy-trellis).

Many libx264 encoder options are mapped to FFmpeg global codec options, while unique encoder options
are provided through private options. Additionally the x264opts and x264-params private options
allows one to pass a list of key=value tuples as accepted by the libx264 x264_param_parse function.

The x264 project website is at http://www.videolan.org/developers/x264.html.

The libx264rgb encoder is the same as libx264, except it accepts packed RGB pixel formats as input
instead of YUV.

http://www.videolan.org/developers/x264.html

16.8.1 Supported Pixel Formats# TOC

x264 supports 8- to 10-bit color spaces. The exact bit depth is controlled at x264’s configure time.
FFmpeg only supports one bit depth in one particular build. In other words, it is not possible to build one
FFmpeg with multiple versions of x264 with different bit depths.

16.8.2 Options# TOC

The following options are supported by the libx264 wrapper. The x264-equivalent options or values are
listed in parentheses for easy migration.

To reduce the duplication of documentation, only the private options and some others requiring special
attention are documented here. For the documentation of the undocumented generic options, see the Codec
Options chapter.

To get a more accurate and extensive documentation of the libx264 options, invoke the command x264
--fullhelp or consult the libx264 documentation.

b (bitrate)

Set bitrate in bits/s. Note that FFmpeg’s b option is expressed in bits/s, while x264’s bitrate is in
kilobits/s.

bf (bframes)
g (keyint)
qmin (qpmin)

Minimum quantizer scale.

qmax (qpmax)

Maximum quantizer scale.

qdiff (qpstep)

Maximum difference between quantizer scales.

qblur (qblur)

Quantizer curve blur

qcomp (qcomp)

Quantizer curve compression factor

refs (ref)

Number of reference frames each P-frame can use. The range is from 0-16.

sc_threshold (scenecut)

Sets the threshold for the scene change detection.

trellis (trellis)

Performs Trellis quantization to increase efficiency. Enabled by default.

nr (nr)
me_range (merange)

Maximum range of the motion search in pixels.

me_method (me)

Set motion estimation method. Possible values in the decreasing order of speed:

‘dia (dia)’
‘epzs (dia)’

Diamond search with radius 1 (fastest). ‘epzs’ is an alias for ‘dia’.

‘hex (hex)’

Hexagonal search with radius 2.

‘umh (umh)’

Uneven multi-hexagon search.

‘esa (esa)’

Exhaustive search.

‘tesa (tesa)’

Hadamard exhaustive search (slowest).

forced-idr

Normally, when forcing a I-frame type, the encoder can select any type of I-frame. This option forces
it to choose an IDR-frame.

subq (subme)

Sub-pixel motion estimation method.

b_strategy (b-adapt)

Adaptive B-frame placement decision algorithm. Use only on first-pass.

keyint_min (min-keyint)

Minimum GOP size.

coder

Set entropy encoder. Possible values:

‘ac’

Enable CABAC.

‘vlc’

Enable CAVLC and disable CABAC. It generates the same effect as x264’s --no-cabac
option.

cmp

Set full pixel motion estimation comparison algorithm. Possible values:

‘chroma’

Enable chroma in motion estimation.

‘sad’

Ignore chroma in motion estimation. It generates the same effect as x264’s
--no-chroma-me option.

threads (threads)

Number of encoding threads.

thread_type

Set multithreading technique. Possible values:

‘slice’

Slice-based multithreading. It generates the same effect as x264’s --sliced-threads
option.

‘frame’

Frame-based multithreading.

flags

Set encoding flags. It can be used to disable closed GOP and enable open GOP by setting it to
-cgop. The result is similar to the behavior of x264’s --open-gop option.

rc_init_occupancy (vbv-init)
preset (preset)

Set the encoding preset.

tune (tune)

Set tuning of the encoding params.

profile (profile)

Set profile restrictions.

fastfirstpass

Enable fast settings when encoding first pass, when set to 1. When set to 0, it has the same effect of
x264’s --slow-firstpass option.

crf (crf)

Set the quality for constant quality mode.

crf_max (crf-max)

In CRF mode, prevents VBV from lowering quality beyond this point.

qp (qp)

Set constant quantization rate control method parameter.

aq-mode (aq-mode)

Set AQ method. Possible values:

‘none (0)’

Disabled.

‘variance (1)’

Variance AQ (complexity mask).

‘autovariance (2)’

Auto-variance AQ (experimental).

aq-strength (aq-strength)

Set AQ strength, reduce blocking and blurring in flat and textured areas.

psy

Use psychovisual optimizations when set to 1. When set to 0, it has the same effect as x264’s
--no-psy option.

psy-rd (psy-rd)

Set strength of psychovisual optimization, in psy-rd:psy-trellis format.

rc-lookahead (rc-lookahead)

Set number of frames to look ahead for frametype and ratecontrol.

weightb

Enable weighted prediction for B-frames when set to 1. When set to 0, it has the same effect as
x264’s --no-weightb option.

weightp (weightp)

Set weighted prediction method for P-frames. Possible values:

‘none (0)’

Disabled

‘simple (1)’

Enable only weighted refs

‘smart (2)’

Enable both weighted refs and duplicates

ssim (ssim)

Enable calculation and printing SSIM stats after the encoding.

intra-refresh (intra-refresh)

Enable the use of Periodic Intra Refresh instead of IDR frames when set to 1.

avcintra-class (class)

Configure the encoder to generate AVC-Intra. Valid values are 50,100 and 200

bluray-compat (bluray-compat)

Configure the encoder to be compatible with the bluray standard. It is a shorthand for setting
"bluray-compat=1 force-cfr=1".

b-bias (b-bias)

Set the influence on how often B-frames are used.

b-pyramid (b-pyramid)

Set method for keeping of some B-frames as references. Possible values:

‘none (none)’

Disabled.

‘strict (strict)’

Strictly hierarchical pyramid.

‘normal (normal)’

Non-strict (not Blu-ray compatible).

mixed-refs

Enable the use of one reference per partition, as opposed to one reference per macroblock when set to
1. When set to 0, it has the same effect as x264’s --no-mixed-refs option.

8x8dct

Enable adaptive spatial transform (high profile 8x8 transform) when set to 1. When set to 0, it has the
same effect as x264’s --no-8x8dct option.

fast-pskip

Enable early SKIP detection on P-frames when set to 1. When set to 0, it has the same effect as
x264’s --no-fast-pskip option.

aud (aud)

Enable use of access unit delimiters when set to 1.

mbtree

Enable use macroblock tree ratecontrol when set to 1. When set to 0, it has the same effect as x264’s
--no-mbtree option.

deblock (deblock)

Set loop filter parameters, in alpha:beta form.

cplxblur (cplxblur)

Set fluctuations reduction in QP (before curve compression).

partitions (partitions)

Set partitions to consider as a comma-separated list of. Possible values in the list:

‘p8x8’

8x8 P-frame partition.

‘p4x4’

4x4 P-frame partition.

‘b8x8’

4x4 B-frame partition.

‘i8x8’

8x8 I-frame partition.

‘i4x4’

4x4 I-frame partition. (Enabling ‘p4x4’ requires ‘p8x8’ to be enabled. Enabling ‘i8x8’
requires adaptive spatial transform (8x8dct option) to be enabled.)

‘none (none)’

Do not consider any partitions.

‘all (all)’

Consider every partition.

direct-pred (direct)

Set direct MV prediction mode. Possible values:

‘none (none)’

Disable MV prediction.

‘spatial (spatial)’

Enable spatial predicting.

‘temporal (temporal)’

Enable temporal predicting.

‘auto (auto)’

Automatically decided.

slice-max-size (slice-max-size)

Set the limit of the size of each slice in bytes. If not specified but RTP payload size (ps) is specified,
that is used.

stats (stats)

Set the file name for multi-pass stats.

nal-hrd (nal-hrd)

Set signal HRD information (requires vbv-bufsize to be set). Possible values:

‘none (none)’

Disable HRD information signaling.

‘vbr (vbr)’

Variable bit rate.

‘cbr (cbr)’

Constant bit rate (not allowed in MP4 container).

x264opts (N.A.)

Set any x264 option, see x264 --fullhelp for a list.

Argument is a list of key=value couples separated by ":". In filter and psy-rd options that use ":" as a
separator themselves, use "," instead. They accept it as well since long ago but this is kept undocumented
for some reason.

For example to specify libx264 encoding options with ffmpeg:

ffmpeg -i foo.mpg -c:v libx264 -x264opts keyint=123:min-keyint=20 -an out.mkv

a53cc boolean

Import closed captions (which must be ATSC compatible format) into output. Only the mpeg2 and
h264 decoders provide these. Default is 1 (on).

x264-params (N.A.)

Override the x264 configuration using a :-separated list of key=value parameters.

This option is functionally the same as the x264opts, but is duplicated for compatibility with the
Libav fork.

For example to specify libx264 encoding options with ffmpeg:

ffmpeg -i INPUT -c:v libx264 -x264-params level=30:bframes=0:weightp=0:\
cabac=0:ref=1:vbv-maxrate=768:vbv-bufsize=2000:analyse=all:me=umh:\
no-fast-pskip=1:subq=6:8x8dct=0:trellis=0 OUTPUT

Encoding ffpresets for common usages are provided so they can be used with the general presets system
(e.g. passing the pre option).

16.9 libx265# TOC

x265 H.265/HEVC encoder wrapper.

This encoder requires the presence of the libx265 headers and library during configuration. You need to
explicitly configure the build with --enable-libx265.

16.9.1 Options# TOC

preset

Set the x265 preset.

tune

Set the x265 tune parameter.

forced-idr

Normally, when forcing a I-frame type, the encoder can select any type of I-frame. This option forces
it to choose an IDR-frame.

x265-params

Set x265 options using a list of key=value couples separated by ":". See x265 --help for a list of
options.

For example to specify libx265 encoding options with -x265-params:

ffmpeg -i input -c:v libx265 -x265-params crf=26:psy-rd=1 output.mp4

16.10 libxvid# TOC

Xvid MPEG-4 Part 2 encoder wrapper.

This encoder requires the presence of the libxvidcore headers and library during configuration. You need
to explicitly configure the build with --enable-libxvid --enable-gpl.

The native mpeg4 encoder supports the MPEG-4 Part 2 format, so users can encode to this format without
this library.

16.10.1 Options# TOC

The following options are supported by the libxvid wrapper. Some of the following options are listed but
are not documented, and correspond to shared codec options. See the Codec Options chapter for their
documentation. The other shared options which are not listed have no effect for the libxvid encoder.

b
g
qmin
qmax
mpeg_quant
threads
bf
b_qfactor
b_qoffset
flags

Set specific encoding flags. Possible values:

‘mv4’

Use four motion vector by macroblock.

‘aic’

Enable high quality AC prediction.

‘gray’

Only encode grayscale.

‘gmc’

Enable the use of global motion compensation (GMC).

‘qpel’

Enable quarter-pixel motion compensation.

‘cgop’

Enable closed GOP.

‘global_header’

Place global headers in extradata instead of every keyframe.

trellis
me_method

Set motion estimation method. Possible values in decreasing order of speed and increasing order of
quality:

‘zero’

Use no motion estimation (default).

‘phods’
‘x1’
‘log’

Enable advanced diamond zonal search for 16x16 blocks and half-pixel refinement for 16x16
blocks. ‘x1’ and ‘log’ are aliases for ‘phods’.

‘epzs’

Enable all of the things described above, plus advanced diamond zonal search for 8x8 blocks,
half-pixel refinement for 8x8 blocks, and motion estimation on chroma planes.

‘full’

Enable all of the things described above, plus extended 16x16 and 8x8 blocks search.

mbd

Set macroblock decision algorithm. Possible values in the increasing order of quality:

‘simple’

Use macroblock comparing function algorithm (default).

‘bits’

Enable rate distortion-based half pixel and quarter pixel refinement for 16x16 blocks.

‘rd’

Enable all of the things described above, plus rate distortion-based half pixel and quarter pixel
refinement for 8x8 blocks, and rate distortion-based search using square pattern.

lumi_aq

Enable lumi masking adaptive quantization when set to 1. Default is 0 (disabled).

variance_aq

Enable variance adaptive quantization when set to 1. Default is 0 (disabled).

When combined with lumi_aq, the resulting quality will not be better than any of the two specified
individually. In other words, the resulting quality will be the worse one of the two effects.

ssim

Set structural similarity (SSIM) displaying method. Possible values:

‘off’

Disable displaying of SSIM information.

‘avg’

Output average SSIM at the end of encoding to stdout. The format of showing the average SSIM
is:

Average SSIM: %f

For users who are not familiar with C, %f means a float number, or a decimal (e.g. 0.939232).

‘frame’

Output both per-frame SSIM data during encoding and average SSIM at the end of encoding to
stdout. The format of per-frame information is:

 SSIM: avg: %1.3f min: %1.3f max: %1.3f

For users who are not familiar with C, %1.3f means a float number rounded to 3 digits after the
dot (e.g. 0.932).

ssim_acc

Set SSIM accuracy. Valid options are integers within the range of 0-4, while 0 gives the most
accurate result and 4 computes the fastest.

16.11 mpeg2# TOC

MPEG-2 video encoder.

16.11.1 Options# TOC

seq_disp_ext integer

Specifies if the encoder should write a sequence_display_extension to the output.

-1
auto

Decide automatically to write it or not (this is the default) by checking if the data to be written is
different from the default or unspecified values.

0
never

Never write it.

1
always

Always write it.

16.12 png# TOC

PNG image encoder.

16.12.1 Private options# TOC

dpi integer

Set physical density of pixels, in dots per inch, unset by default

dpm integer

Set physical density of pixels, in dots per meter, unset by default

16.13 ProRes# TOC

Apple ProRes encoder.

FFmpeg contains 2 ProRes encoders, the prores-aw and prores-ks encoder. The used encoder can be
chosen with the -vcodec option.

16.13.1 Private Options for prores-ks# TOC

profile integer

Select the ProRes profile to encode

‘proxy’
‘lt’
‘standard’
‘hq’
‘4444’
‘4444xq’

quant_mat integer

Select quantization matrix.

‘auto’
‘default’
‘proxy’
‘lt’
‘standard’
‘hq’

If set to auto, the matrix matching the profile will be picked. If not set, the matrix providing the
highest quality, default, will be picked.

bits_per_mb integer

How many bits to allot for coding one macroblock. Different profiles use between 200 and 2400 bits
per macroblock, the maximum is 8000.

mbs_per_slice integer

Number of macroblocks in each slice (1-8); the default value (8) should be good in almost all
situations.

vendor string

Override the 4-byte vendor ID. A custom vendor ID like apl0 would claim the stream was produced
by the Apple encoder.

alpha_bits integer

Specify number of bits for alpha component. Possible values are 0, 8 and 16. Use 0 to disable alpha
plane coding.

16.13.2 Speed considerations# TOC

In the default mode of operation the encoder has to honor frame constraints (i.e. not produce frames with
size bigger than requested) while still making output picture as good as possible. A frame containing a lot
of small details is harder to compress and the encoder would spend more time searching for appropriate
quantizers for each slice.

Setting a higher bits_per_mb limit will improve the speed.

For the fastest encoding speed set the qscale parameter (4 is the recommended value) and do not set a
size constraint.

16.14 QSV encoders# TOC

The family of Intel QuickSync Video encoders (MPEG-2, H.264 and HEVC)

The ratecontrol method is selected as follows:

When global_quality is specified, a quality-based mode is used. Specifically this means either
- CQP - constant quantizer scale, when the qscale codec flag is also set (the -qscale
ffmpeg option).
- LA_ICQ - intelligent constant quality with lookahead, when the look_ahead option is also
set.
- ICQ – intelligent constant quality otherwise.

Otherwise, a bitrate-based mode is used. For all of those, you should specify at least the desired
average bitrate with the b option.

- LA - VBR with lookahead, when the look_ahead option is specified.
- VCM - video conferencing mode, when the vcm option is set.
- CBR - constant bitrate, when maxrate is specified and equal to the average bitrate.
- VBR - variable bitrate, when maxrate is specified, but is higher than the average bitrate.
- AVBR - average VBR mode, when maxrate is not specified. This mode is further configured
by the avbr_accuracy and avbr_convergence options.

Note that depending on your system, a different mode than the one you specified may be selected by the
encoder. Set the verbosity level to verbose or higher to see the actual settings used by the QSV runtime.

Additional libavcodec global options are mapped to MSDK options as follows:

g/gop_size -> GopPicSize
bf/max_b_frames+1 -> GopRefDist
rc_init_occupancy/rc_initial_buffer_occupancy -> InitialDelayInKB
slices -> NumSlice
refs -> NumRefFrame
b_strategy/b_frame_strategy -> BRefType
cgop/CLOSED_GOP codec flag -> GopOptFlag
For the CQP mode, the i_qfactor/i_qoffset and b_qfactor/b_qoffset set the
difference between QPP and QPI, and QPP and QPB respectively.
Setting the coder option to the value vlc will make the H.264 encoder use CAVLC instead of
CABAC.

16.15 snow# TOC

16.15.1 Options# TOC

iterative_dia_size

dia size for the iterative motion estimation

16.16 VAAPI encoders# TOC

Wrappers for hardware encoders accessible via VAAPI.

These encoders only accept input in VAAPI hardware surfaces. If you have input in software frames, use
the hwupload filter to upload them to the GPU.

The following standard libavcodec options are used:

g / gop_size
bf / max_b_frames
profile
level
b / bit_rate
maxrate / rc_max_rate
bufsize / rc_buffer_size
rc_init_occupancy / rc_initial_buffer_occupancy
compression_level

Speed / quality tradeoff: higher values are faster / worse quality.

q / global_quality

Size / quality tradeoff: higher values are smaller / worse quality.

qmin (only: qmax is not supported)
i_qfactor / i_quant_factor
i_qoffset / i_quant_offset
b_qfactor / b_quant_factor
b_qoffset / b_quant_offset

h264_vaapi

profile sets the value of profile_idc and the constraint_set*_flags. level sets the value of
level_idc.

low_power

Use low-power encoding mode.

coder

Set entropy encoder (default is cabac). Possible values:

‘ac’
‘cabac’

Use CABAC.

‘vlc’
‘cavlc’

Use CAVLC.

hevc_vaapi

profile and level set the values of general_profile_idc and general_level_idc respectively.

mjpeg_vaapi

Always encodes using the standard quantisation and huffman tables - global_quality scales the
standard quantisation table (range 1-100).

mpeg2_vaapi

profile and level set the value of profile_and_level_indication.

No rate control is supported.

vp8_vaapi

B-frames are not supported.

global_quality sets the q_idx used for non-key frames (range 0-127).

loop_filter_level
loop_filter_sharpness

Manually set the loop filter parameters.

vp9_vaapi

global_quality sets the q_idx used for P-frames (range 0-255).

loop_filter_level
loop_filter_sharpness

Manually set the loop filter parameters.

B-frames are supported, but the output stream is always in encode order rather than display order. If
B-frames are enabled, it may be necessary to use the vp9_raw_reorder bitstream filter to modify
the output stream to display frames in the correct order.

Only normal frames are produced - the vp9_superframe bitstream filter may be required to
produce a stream usable with all decoders.

16.17 vc2# TOC

SMPTE VC-2 (previously BBC Dirac Pro). This codec was primarily aimed at professional broadcasting
but since it supports yuv420, yuv422 and yuv444 at 8 (limited range or full range), 10 or 12 bits, this
makes it suitable for other tasks which require low overhead and low compression (like screen recording).

16.17.1 Options# TOC

b

Sets target video bitrate. Usually that’s around 1:6 of the uncompressed video bitrate (e.g. for
1920x1080 50fps yuv422p10 that’s around 400Mbps). Higher values (close to the uncompressed
bitrate) turn on lossless compression mode.

field_order

Enables field coding when set (e.g. to tt - top field first) for interlaced inputs. Should increase
compression with interlaced content as it splits the fields and encodes each separately.

wavelet_depth

Sets the total amount of wavelet transforms to apply, between 1 and 5 (default). Lower values reduce
compression and quality. Less capable decoders may not be able to handle values of
wavelet_depth over 3.

wavelet_type

Sets the transform type. Currently only 5_3 (LeGall) and 9_7 (Deslauriers-Dubuc) are implemented,
with 9_7 being the one with better compression and thus is the default.

slice_width
slice_height

Sets the slice size for each slice. Larger values result in better compression. For compatibility with
other more limited decoders use slice_width of 32 and slice_height of 8.

tolerance

Sets the undershoot tolerance of the rate control system in percent. This is to prevent an expensive
search from being run.

qm

Sets the quantization matrix preset to use by default or when wavelet_depth is set to 5

- default Uses the default quantization matrix from the specifications, extended with values for
the fifth level. This provides a good balance between keeping detail and omitting artifacts.
- flat Use a completely zeroed out quantization matrix. This increases PSNR but might reduce
perception. Use in bogus benchmarks.
- color Reduces detail but attempts to preserve color at extremely low bitrates.

17 Subtitles Encoders# TOC

17.1 dvdsub# TOC

This codec encodes the bitmap subtitle format that is used in DVDs. Typically they are stored in
VOBSUB file pairs (*.idx + *.sub), and they can also be used in Matroska files.

17.1.1 Options# TOC

even_rows_fix

When set to 1, enable a work-around that makes the number of pixel rows even in all subtitles. This
fixes a problem with some players that cut off the bottom row if the number is odd. The work-around
just adds a fully transparent row if needed. The overhead is low, typically one byte per subtitle on
average.

By default, this work-around is disabled.

18 Bitstream Filters# TOC

When you configure your FFmpeg build, all the supported bitstream filters are enabled by default. You
can list all available ones using the configure option --list-bsfs.

You can disable all the bitstream filters using the configure option --disable-bsfs, and selectively
enable any bitstream filter using the option --enable-bsf=BSF, or you can disable a particular
bitstream filter using the option --disable-bsf=BSF.

The option -bsfs of the ff* tools will display the list of all the supported bitstream filters included in
your build.

The ff* tools have a -bsf option applied per stream, taking a comma-separated list of filters, whose
parameters follow the filter name after a ’=’.

ffmpeg -i INPUT -c:v copy -bsf:v filter1[=opt1=str1:opt2=str2][,filter2] OUTPUT

Below is a description of the currently available bitstream filters, with their parameters, if any.

18.1 aac_adtstoasc# TOC

Convert MPEG-2/4 AAC ADTS to an MPEG-4 Audio Specific Configuration bitstream.

This filter creates an MPEG-4 AudioSpecificConfig from an MPEG-2/4 ADTS header and removes the
ADTS header.

This filter is required for example when copying an AAC stream from a raw ADTS AAC or an MPEG-TS
container to MP4A-LATM, to an FLV file, or to MOV/MP4 files and related formats such as 3GP or
M4A. Please note that it is auto-inserted for MP4A-LATM and MOV/MP4 and related formats.

18.2 chomp# TOC

Remove zero padding at the end of a packet.

18.3 dca_core# TOC

Extract the core from a DCA/DTS stream, dropping extensions such as DTS-HD.

18.4 dump_extra# TOC

Add extradata to the beginning of the filtered packets.

The additional argument specifies which packets should be filtered. It accepts the values:

‘a’

add extradata to all key packets, but only if local_header is set in the flags2 codec context field

‘k’

add extradata to all key packets

‘e’

add extradata to all packets

If not specified it is assumed ‘k’.

For example the following ffmpeg command forces a global header (thus disabling individual packet
headers) in the H.264 packets generated by the libx264 encoder, but corrects them by adding the header
stored in extradata to the key packets:

ffmpeg -i INPUT -map 0 -flags:v +global_header -c:v libx264 -bsf:v dump_extra out.ts

18.5 extract_extradata# TOC

Extract the in-band extradata.

Certain codecs allow the long-term headers (e.g. MPEG-2 sequence headers, or H.264/HEVC
(VPS/)SPS/PPS) to be transmitted either "in-band" (i.e. as a part of the bitstream containing the coded
frames) or "out of band" (e.g. on the container level). This latter form is called "extradata" in FFmpeg
terminology.

This bitstream filter detects the in-band headers and makes them available as extradata.

remove

When this option is enabled, the long-term headers are removed from the bitstream after extraction.

18.6 h264_metadata# TOC

Modify metadata embedded in an H.264 stream.

aud

Insert or remove AUD NAL units in all access units of the stream.

‘insert’
‘remove’

sample_aspect_ratio

Set the sample aspect ratio of the stream in the VUI parameters.

video_format
video_full_range_flag

Set the video format in the stream (see H.264 section E.2.1 and table E-2).

colour_primaries
transfer_characteristics
matrix_coefficients

Set the colour description in the stream (see H.264 section E.2.1 and tables E-3, E-4 and E-5).

chroma_sample_loc_type

Set the chroma sample location in the stream (see H.264 section E.2.1 and figure E-1).

tick_rate

Set the tick rate (num_units_in_tick / time_scale) in the VUI parameters. This is the smallest time
unit representable in the stream, and in many cases represents the field rate of the stream (double the
frame rate).

fixed_frame_rate_flag

Set whether the stream has fixed framerate - typically this indicates that the framerate is exactly half
the tick rate, but the exact meaning is dependent on interlacing and the picture structure (see H.264
section E.2.1 and table E-6).

crop_left
crop_right
crop_top
crop_bottom

Set the frame cropping offsets in the SPS. These values will replace the current ones if the stream is
already cropped.

These fields are set in pixels. Note that some sizes may not be representable if the chroma is
subsampled or the stream is interlaced (see H.264 section 7.4.2.1.1).

sei_user_data

Insert a string as SEI unregistered user data. The argument must be of the form UUID+string, where
the UUID is as hex digits possibly separated by hyphens, and the string can be anything.

For example, ‘086f3693-b7b3-4f2c-9653-21492feee5b8+hello’ will insert the string
“hello” associated with the given UUID.

18.7 h264_mp4toannexb# TOC

Convert an H.264 bitstream from length prefixed mode to start code prefixed mode (as defined in the
Annex B of the ITU-T H.264 specification).

This is required by some streaming formats, typically the MPEG-2 transport stream format (muxer
mpegts).

For example to remux an MP4 file containing an H.264 stream to mpegts format with ffmpeg, you can
use the command:

ffmpeg -i INPUT.mp4 -codec copy -bsf:v h264_mp4toannexb OUTPUT.ts

Please note that this filter is auto-inserted for MPEG-TS (muxer mpegts) and raw H.264 (muxer h264)
output formats.

18.8 h264_redundant_pps# TOC

This applies a specific fixup to some Blu-ray streams which contain redundant PPSs modifying irrelevant
parameters of the stream which confuse other transformations which require correct extradata.

A new single global PPS is created, and all of the redundant PPSs within the stream are removed.

18.9 hevc_metadata# TOC

Modify metadata embedded in an HEVC stream.

aud

Insert or remove AUD NAL units in all access units of the stream.

‘insert’
‘remove’

sample_aspect_ratio

Set the sample aspect ratio in the stream in the VUI parameters.

video_format
video_full_range_flag

Set the video format in the stream (see H.265 section E.3.1 and table E.2).

colour_primaries
transfer_characteristics
matrix_coefficients

Set the colour description in the stream (see H.265 section E.3.1 and tables E.3, E.4 and E.5).

chroma_sample_loc_type

Set the chroma sample location in the stream (see H.265 section E.3.1 and figure E.1).

tick_rate

Set the tick rate in the VPS and VUI parameters (num_units_in_tick / time_scale). Combined with
num_ticks_poc_diff_one, this can set a constant framerate in the stream. Note that it is likely
to be overridden by container parameters when the stream is in a container.

num_ticks_poc_diff_one

Set poc_proportional_to_timing_flag in VPS and VUI and use this value to set
num_ticks_poc_diff_one_minus1 (see H.265 sections 7.4.3.1 and E.3.1). Ignored if tick_rate is
not also set.

crop_left
crop_right
crop_top
crop_bottom

Set the conformance window cropping offsets in the SPS. These values will replace the current ones
if the stream is already cropped.

These fields are set in pixels. Note that some sizes may not be representable if the chroma is
subsampled (H.265 section 7.4.3.2.1).

18.10 hevc_mp4toannexb# TOC

Convert an HEVC/H.265 bitstream from length prefixed mode to start code prefixed mode (as defined in
the Annex B of the ITU-T H.265 specification).

This is required by some streaming formats, typically the MPEG-2 transport stream format (muxer
mpegts).

For example to remux an MP4 file containing an HEVC stream to mpegts format with ffmpeg, you can
use the command:

ffmpeg -i INPUT.mp4 -codec copy -bsf:v hevc_mp4toannexb OUTPUT.ts

Please note that this filter is auto-inserted for MPEG-TS (muxer mpegts) and raw HEVC/H.265 (muxer
h265 or hevc) output formats.

18.11 imxdump# TOC

Modifies the bitstream to fit in MOV and to be usable by the Final Cut Pro decoder. This filter only
applies to the mpeg2video codec, and is likely not needed for Final Cut Pro 7 and newer with the
appropriate -tag:v.

For example, to remux 30 MB/sec NTSC IMX to MOV:

ffmpeg -i input.mxf -c copy -bsf:v imxdump -tag:v mx3n output.mov

18.12 mjpeg2jpeg# TOC

Convert MJPEG/AVI1 packets to full JPEG/JFIF packets.

MJPEG is a video codec wherein each video frame is essentially a JPEG image. The individual frames can
be extracted without loss, e.g. by

ffmpeg -i ../some_mjpeg.avi -c:v copy frames_%d.jpg

Unfortunately, these chunks are incomplete JPEG images, because they lack the DHT segment required
for decoding. Quoting from http://www.digitalpreservation.gov/formats/fdd/fdd000063.shtml:

Avery Lee, writing in the rec.video.desktop newsgroup in 2001, commented that "MJPEG, or at least the
MJPEG in AVIs having the MJPG fourcc, is restricted JPEG with a fixed – and *omitted* – Huffman
table. The JPEG must be YCbCr colorspace, it must be 4:2:2, and it must use basic Huffman encoding, not
arithmetic or progressive. . . . You can indeed extract the MJPEG frames and decode them with a regular
JPEG decoder, but you have to prepend the DHT segment to them, or else the decoder won’t have any
idea how to decompress the data. The exact table necessary is given in the OpenDML spec."

This bitstream filter patches the header of frames extracted from an MJPEG stream (carrying the AVI1
header ID and lacking a DHT segment) to produce fully qualified JPEG images.

ffmpeg -i mjpeg-movie.avi -c:v copy -bsf:v mjpeg2jpeg frame_%d.jpg
exiftran -i -9 frame*.jpg
ffmpeg -i frame_%d.jpg -c:v copy rotated.avi

18.13 mjpegadump# TOC

Add an MJPEG A header to the bitstream, to enable decoding by Quicktime.

18.14 mov2textsub# TOC

Extract a representable text file from MOV subtitles, stripping the metadata header from each subtitle
packet.

See also the text2movsub filter.

http://www.digitalpreservation.gov/formats/fdd/fdd000063.shtml

18.15 mp3decomp# TOC

Decompress non-standard compressed MP3 audio headers.

18.16 mpeg2_metadata# TOC

Modify metadata embedded in an MPEG-2 stream.

display_aspect_ratio

Set the display aspect ratio in the stream.

The following fixed values are supported:

4/3
16/9
221/100

Any other value will result in square pixels being signalled instead (see H.262 section 6.3.3 and table
6-3).

frame_rate

Set the frame rate in the stream. This is constructed from a table of known values combined with a
small multiplier and divisor - if the supplied value is not exactly representable, the nearest
representable value will be used instead (see H.262 section 6.3.3 and table 6-4).

video_format

Set the video format in the stream (see H.262 section 6.3.6 and table 6-6).

colour_primaries
transfer_characteristics
matrix_coefficients

Set the colour description in the stream (see H.262 section 6.3.6 and tables 6-7, 6-8 and 6-9).

18.17 mpeg4_unpack_bframes# TOC

Unpack DivX-style packed B-frames.

DivX-style packed B-frames are not valid MPEG-4 and were only a workaround for the broken Video for
Windows subsystem. They use more space, can cause minor AV sync issues, require more CPU power to
decode (unless the player has some decoded picture queue to compensate the 2,0,2,0 frame per packet
style) and cause trouble if copied into a standard container like mp4 or mpeg-ps/ts, because MPEG-4
decoders may not be able to decode them, since they are not valid MPEG-4.

For example to fix an AVI file containing an MPEG-4 stream with DivX-style packed B-frames using
ffmpeg, you can use the command:

ffmpeg -i INPUT.avi -codec copy -bsf:v mpeg4_unpack_bframes OUTPUT.avi

18.18 noise# TOC

Damages the contents of packets or simply drops them without damaging the container. Can be used for
fuzzing or testing error resilience/concealment.

Parameters:

amount

A numeral string, whose value is related to how often output bytes will be modified. Therefore,
values below or equal to 0 are forbidden, and the lower the more frequent bytes will be modified,
with 1 meaning every byte is modified.

dropamount

A numeral string, whose value is related to how often packets will be dropped. Therefore, values
below or equal to 0 are forbidden, and the lower the more frequent packets will be dropped, with 1
meaning every packet is dropped.

The following example applies the modification to every byte but does not drop any packets.

ffmpeg -i INPUT -c copy -bsf noise[=1] output.mkv

18.19 null# TOC

This bitstream filter passes the packets through unchanged.

18.20 remove_extra# TOC

Remove extradata from packets.

It accepts the following parameter:

freq

Set which frame types to remove extradata from.

‘k’

Remove extradata from non-keyframes only.

‘keyframe’

Remove extradata from keyframes only.

‘e, all’

Remove extradata from all frames.

18.21 text2movsub# TOC

Convert text subtitles to MOV subtitles (as used by the mov_text codec) with metadata headers.

See also the mov2textsub filter.

18.22 trace_headers# TOC

Log trace output containing all syntax elements in the coded stream headers (everything above the level of
individual coded blocks). This can be useful for debugging low-level stream issues.

Supports H.264, H.265 and MPEG-2.

18.23 vp9_superframe# TOC

Merge VP9 invisible (alt-ref) frames back into VP9 superframes. This fixes merging of split/segmented
VP9 streams where the alt-ref frame was split from its visible counterpart.

18.24 vp9_superframe_split# TOC

Split VP9 superframes into single frames.

18.25 vp9_raw_reorder# TOC

Given a VP9 stream with correct timestamps but possibly out of order, insert additional
show-existing-frame packets to correct the ordering.

19 Format Options# TOC

The libavformat library provides some generic global options, which can be set on all the muxers and
demuxers. In addition each muxer or demuxer may support so-called private options, which are specific
for that component.

Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in
the AVFormatContext options or using the libavutil/opt.h API for programmatic use.

The list of supported options follows:

avioflags flags (input/output)

Possible values:

‘direct’

Reduce buffering.

probesize integer (input)

Set probing size in bytes, i.e. the size of the data to analyze to get stream information. A higher value
will enable detecting more information in case it is dispersed into the stream, but will increase
latency. Must be an integer not lesser than 32. It is 5000000 by default.

packetsize integer (output)

Set packet size.

fflags flags (input/output)

Set format flags.

Possible values:

‘ignidx’

Ignore index.

‘fastseek’

Enable fast, but inaccurate seeks for some formats.

‘genpts’

Generate PTS.

‘nofillin’

Do not fill in missing values that can be exactly calculated.

‘noparse’

Disable AVParsers, this needs +nofillin too.

‘igndts’

Ignore DTS.

‘discardcorrupt’

Discard corrupted frames.

‘sortdts’

Try to interleave output packets by DTS.

‘keepside’

Do not merge side data.

‘latm’

Enable RTP MP4A-LATM payload.

‘nobuffer’

Reduce the latency introduced by optional buffering

‘bitexact’

Only write platform-, build- and time-independent data. This ensures that file and data
checksums are reproducible and match between platforms. Its primary use is for regression
testing.

‘shortest’

Stop muxing at the end of the shortest stream. It may be needed to increase
max_interleave_delta to avoid flushing the longer streams before EOF.

seek2any integer (input)

Allow seeking to non-keyframes on demuxer level when supported if set to 1. Default is 0.

analyzeduration integer (input)

Specify how many microseconds are analyzed to probe the input. A higher value will enable
detecting more accurate information, but will increase latency. It defaults to 5,000,000 microseconds
= 5 seconds.

cryptokey hexadecimal string (input)

Set decryption key.

indexmem integer (input)

Set max memory used for timestamp index (per stream).

rtbufsize integer (input)

Set max memory used for buffering real-time frames.

fdebug flags (input/output)

Print specific debug info.

Possible values:

‘ts’
max_delay integer (input/output)

Set maximum muxing or demuxing delay in microseconds.

fpsprobesize integer (input)

Set number of frames used to probe fps.

audio_preload integer (output)

Set microseconds by which audio packets should be interleaved earlier.

chunk_duration integer (output)

Set microseconds for each chunk.

chunk_size integer (output)

Set size in bytes for each chunk.

err_detect, f_err_detect flags (input)

Set error detection flags. f_err_detect is deprecated and should be used only via the ffmpeg
tool.

Possible values:

‘crccheck’

Verify embedded CRCs.

‘bitstream’

Detect bitstream specification deviations.

‘buffer’

Detect improper bitstream length.

‘explode’

Abort decoding on minor error detection.

‘careful’

Consider things that violate the spec and have not been seen in the wild as errors.

‘compliant’

Consider all spec non compliancies as errors.

‘aggressive’

Consider things that a sane encoder should not do as an error.

max_interleave_delta integer (output)

Set maximum buffering duration for interleaving. The duration is expressed in microseconds, and
defaults to 1000000 (1 second).

To ensure all the streams are interleaved correctly, libavformat will wait until it has at least one
packet for each stream before actually writing any packets to the output file. When some streams are
"sparse" (i.e. there are large gaps between successive packets), this can result in excessive buffering.

This field specifies the maximum difference between the timestamps of the first and the last packet in
the muxing queue, above which libavformat will output a packet regardless of whether it has queued
a packet for all the streams.

If set to 0, libavformat will continue buffering packets until it has a packet for each stream, regardless
of the maximum timestamp difference between the buffered packets.

use_wallclock_as_timestamps integer (input)

Use wallclock as timestamps if set to 1. Default is 0.

avoid_negative_ts integer (output)

Possible values:

‘make_non_negative’

Shift timestamps to make them non-negative. Also note that this affects only leading negative
timestamps, and not non-monotonic negative timestamps.

‘make_zero’

Shift timestamps so that the first timestamp is 0.

‘auto (default)’

Enables shifting when required by the target format.

‘disabled’

Disables shifting of timestamp.

When shifting is enabled, all output timestamps are shifted by the same amount. Audio, video, and
subtitles desynching and relative timestamp differences are preserved compared to how they would
have been without shifting.

skip_initial_bytes integer (input)

Set number of bytes to skip before reading header and frames if set to 1. Default is 0.

correct_ts_overflow integer (input)

Correct single timestamp overflows if set to 1. Default is 1.

flush_packets integer (output)

Flush the underlying I/O stream after each packet. Default is -1 (auto), which means that the
underlying protocol will decide, 1 enables it, and has the effect of reducing the latency, 0 disables it
and may increase IO throughput in some cases.

output_ts_offset offset (output)

Set the output time offset.

offset must be a time duration specification, see (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual.

The offset is added by the muxer to the output timestamps.

Specifying a positive offset means that the corresponding streams are delayed bt the time duration
specified in offset. Default value is 0 (meaning that no offset is applied).

format_whitelist list (input)

"," separated list of allowed demuxers. By default all are allowed.

dump_separator string (input)

Separator used to separate the fields printed on the command line about the Stream parameters. For
example to separate the fields with newlines and indention:

ffprobe -dump_separator "
 " -i ~/videos/matrixbench_mpeg2.mpg

max_streams integer (input)

Specifies the maximum number of streams. This can be used to reject files that would require too
many resources due to a large number of streams.

19.1 Format stream specifiers# TOC

Format stream specifiers allow selection of one or more streams that match specific properties.

Possible forms of stream specifiers are:

stream_index

Matches the stream with this index.

stream_type[:stream_index]

stream_type is one of following: ’v’ for video, ’a’ for audio, ’s’ for subtitle, ’d’ for data, and ’t’ for
attachments. If stream_index is given, then it matches the stream number stream_index of this type.
Otherwise, it matches all streams of this type.

p:program_id[:stream_index]

If stream_index is given, then it matches the stream with number stream_index in the program with
the id program_id. Otherwise, it matches all streams in the program.

#stream_id

Matches the stream by a format-specific ID.

The exact semantics of stream specifiers is defined by the
avformat_match_stream_specifier() function declared in the
libavformat/avformat.h header.

20 Demuxers# TOC

Demuxers are configured elements in FFmpeg that can read the multimedia streams from a particular type
of file.

When you configure your FFmpeg build, all the supported demuxers are enabled by default. You can list
all available ones using the configure option --list-demuxers.

You can disable all the demuxers using the configure option --disable-demuxers, and selectively
enable a single demuxer with the option --enable-demuxer=DEMUXER, or disable it with the option
--disable-demuxer=DEMUXER.

The option -demuxers of the ff* tools will display the list of enabled demuxers. Use -formats to
view a combined list of enabled demuxers and muxers.

The description of some of the currently available demuxers follows.

20.1 aa# TOC

Audible Format 2, 3, and 4 demuxer.

This demuxer is used to demux Audible Format 2, 3, and 4 (.aa) files.

20.2 applehttp# TOC

Apple HTTP Live Streaming demuxer.

This demuxer presents all AVStreams from all variant streams. The id field is set to the bitrate variant
index number. By setting the discard flags on AVStreams (by pressing ’a’ or ’v’ in ffplay), the caller can
decide which variant streams to actually receive. The total bitrate of the variant that the stream belongs to
is available in a metadata key named "variant_bitrate".

20.3 apng# TOC

Animated Portable Network Graphics demuxer.

This demuxer is used to demux APNG files. All headers, but the PNG signature, up to (but not including)
the first fcTL chunk are transmitted as extradata. Frames are then split as being all the chunks between two
fcTL ones, or between the last fcTL and IEND chunks.

-ignore_loop bool

Ignore the loop variable in the file if set.

-max_fps int

Maximum framerate in frames per second (0 for no limit).

-default_fps int

Default framerate in frames per second when none is specified in the file (0 meaning as fast as
possible).

20.4 asf# TOC

Advanced Systems Format demuxer.

This demuxer is used to demux ASF files and MMS network streams.

-no_resync_search bool

Do not try to resynchronize by looking for a certain optional start code.

20.5 concat# TOC

Virtual concatenation script demuxer.

This demuxer reads a list of files and other directives from a text file and demuxes them one after the
other, as if all their packets had been muxed together.

The timestamps in the files are adjusted so that the first file starts at 0 and each next file starts where the
previous one finishes. Note that it is done globally and may cause gaps if all streams do not have exactly
the same length.

All files must have the same streams (same codecs, same time base, etc.).

The duration of each file is used to adjust the timestamps of the next file: if the duration is incorrect
(because it was computed using the bit-rate or because the file is truncated, for example), it can cause
artifacts. The duration directive can be used to override the duration stored in each file.

20.5.1 Syntax# TOC

The script is a text file in extended-ASCII, with one directive per line. Empty lines, leading spaces and
lines starting with ’#’ are ignored. The following directive is recognized:

file path

Path to a file to read; special characters and spaces must be escaped with backslash or single quotes.

All subsequent file-related directives apply to that file.

ffconcat version 1.0

Identify the script type and version. It also sets the safe option to 1 if it was -1.

To make FFmpeg recognize the format automatically, this directive must appear exactly as is (no
extra space or byte-order-mark) on the very first line of the script.

duration dur

Duration of the file. This information can be specified from the file; specifying it here may be more
efficient or help if the information from the file is not available or accurate.

If the duration is set for all files, then it is possible to seek in the whole concatenated video.

inpoint timestamp

In point of the file. When the demuxer opens the file it instantly seeks to the specified timestamp.
Seeking is done so that all streams can be presented successfully at In point.

This directive works best with intra frame codecs, because for non-intra frame ones you will usually
get extra packets before the actual In point and the decoded content will most likely contain frames before
In point too.

For each file, packets before the file In point will have timestamps less than the calculated start
timestamp of the file (negative in case of the first file), and the duration of the files (if not specified by the
duration directive) will be reduced based on their specified In point.

Because of potential packets before the specified In point, packet timestamps may overlap between
two concatenated files.

outpoint timestamp

Out point of the file. When the demuxer reaches the specified decoding timestamp in any of the
streams, it handles it as an end of file condition and skips the current and all the remaining packets
from all streams.

Out point is exclusive, which means that the demuxer will not output packets with a decoding
timestamp greater or equal to Out point.

This directive works best with intra frame codecs and formats where all streams are tightly
interleaved. For non-intra frame codecs you will usually get additional packets with presentation
timestamp after Out point therefore the decoded content will most likely contain frames after Out
point too. If your streams are not tightly interleaved you may not get all the packets from all streams
before Out point and you may only will be able to decode the earliest stream until Out point.

The duration of the files (if not specified by the duration directive) will be reduced based on their
specified Out point.

file_packet_metadata key=value

Metadata of the packets of the file. The specified metadata will be set for each file packet. You can
specify this directive multiple times to add multiple metadata entries.

stream

Introduce a stream in the virtual file. All subsequent stream-related directives apply to the last
introduced stream. Some streams properties must be set in order to allow identifying the matching
streams in the subfiles. If no streams are defined in the script, the streams from the first file are
copied.

exact_stream_id id

Set the id of the stream. If this directive is given, the string with the corresponding id in the subfiles
will be used. This is especially useful for MPEG-PS (VOB) files, where the order of the streams is
not reliable.

20.5.2 Options# TOC

This demuxer accepts the following option:

safe

If set to 1, reject unsafe file paths. A file path is considered safe if it does not contain a protocol
specification and is relative and all components only contain characters from the portable character
set (letters, digits, period, underscore and hyphen) and have no period at the beginning of a
component.

If set to 0, any file name is accepted.

The default is 1.

-1 is equivalent to 1 if the format was automatically probed and 0 otherwise.

auto_convert

If set to 1, try to perform automatic conversions on packet data to make the streams concatenable.
The default is 1.

Currently, the only conversion is adding the h264_mp4toannexb bitstream filter to H.264 streams in
MP4 format. This is necessary in particular if there are resolution changes.

segment_time_metadata

If set to 1, every packet will contain the lavf.concat.start_time and the lavf.concat.duration packet
metadata values which are the start_time and the duration of the respective file segments in the
concatenated output expressed in microseconds. The duration metadata is only set if it is known
based on the concat file. The default is 0.

20.5.3 Examples# TOC

Use absolute filenames and include some comments:

my first filename
file /mnt/share/file-1.wav
my second filename including whitespace
file ’/mnt/share/file 2.wav’
my third filename including whitespace plus single quote
file ’/mnt/share/file 3’\’’.wav’

Allow for input format auto-probing, use safe filenames and set the duration of the first file:

ffconcat version 1.0

file file-1.wav
duration 20.0

file subdir/file-2.wav

20.6 flv, live_flv# TOC

Adobe Flash Video Format demuxer.

This demuxer is used to demux FLV files and RTMP network streams. In case of live network streams, if
you force format, you may use live_flv option instead of flv to survive timestamp discontinuities.

ffmpeg -f flv -i myfile.flv ...
ffmpeg -f live_flv -i rtmp://<any.server>/anything/key

-flv_metadata bool

Allocate the streams according to the onMetaData array content.

20.7 gif# TOC

Animated GIF demuxer.

It accepts the following options:

min_delay

Set the minimum valid delay between frames in hundredths of seconds. Range is 0 to 6000. Default
value is 2.

max_gif_delay

Set the maximum valid delay between frames in hundredth of seconds. Range is 0 to 65535. Default
value is 65535 (nearly eleven minutes), the maximum value allowed by the specification.

default_delay

Set the default delay between frames in hundredths of seconds. Range is 0 to 6000. Default value is
10.

ignore_loop

GIF files can contain information to loop a certain number of times (or infinitely). If ignore_loop
is set to 1, then the loop setting from the input will be ignored and looping will not occur. If set to 0,
then looping will occur and will cycle the number of times according to the GIF. Default value is 1.

For example, with the overlay filter, place an infinitely looping GIF over another video:

ffmpeg -i input.mp4 -ignore_loop 0 -i input.gif -filter_complex overlay=shortest=1 out.mkv

Note that in the above example the shortest option for overlay filter is used to end the output video at the
length of the shortest input file, which in this case is input.mp4 as the GIF in this example loops
infinitely.

20.8 hls# TOC

HLS demuxer

It accepts the following options:

live_start_index

segment index to start live streams at (negative values are from the end).

allowed_extensions

’,’ separated list of file extensions that hls is allowed to access.

max_reload

Maximum number of times a insufficient list is attempted to be reloaded. Default value is 1000.

20.9 image2# TOC

Image file demuxer.

This demuxer reads from a list of image files specified by a pattern. The syntax and meaning of the pattern
is specified by the option pattern_type.

The pattern may contain a suffix which is used to automatically determine the format of the images
contained in the files.

The size, the pixel format, and the format of each image must be the same for all the files in the sequence.

This demuxer accepts the following options:

framerate

Set the frame rate for the video stream. It defaults to 25.

loop

If set to 1, loop over the input. Default value is 0.

pattern_type

Select the pattern type used to interpret the provided filename.

pattern_type accepts one of the following values.

none

Disable pattern matching, therefore the video will only contain the specified image. You should
use this option if you do not want to create sequences from multiple images and your filenames may
contain special pattern characters.

sequence

Select a sequence pattern type, used to specify a sequence of files indexed by sequential
numbers.

A sequence pattern may contain the string "%d" or "%0Nd", which specifies the position of the
characters representing a sequential number in each filename matched by the pattern. If the form
"%d0Nd" is used, the string representing the number in each filename is 0-padded and N is the
total number of 0-padded digits representing the number. The literal character ’%’ can be
specified in the pattern with the string "%%".

If the sequence pattern contains "%d" or "%0Nd", the first filename of the file list specified by
the pattern must contain a number inclusively contained between start_number and
start_number+start_number_range-1, and all the following numbers must be sequential.

For example the pattern "img-%03d.bmp" will match a sequence of filenames of the form
img-001.bmp, img-002.bmp, ..., img-010.bmp, etc.; the pattern "i%%m%%g-%d.jpg"
will match a sequence of filenames of the form i%m%g-1.jpg, i%m%g-2.jpg, ...,
i%m%g-10.jpg, etc.

Note that the pattern must not necessarily contain "%d" or "%0Nd", for example to convert a
single image file img.jpeg you can employ the command:

ffmpeg -i img.jpeg img.png

glob

Select a glob wildcard pattern type.

The pattern is interpreted like a glob() pattern. This is only selectable if libavformat was
compiled with globbing support.

glob_sequence (deprecated, will be removed)

Select a mixed glob wildcard/sequence pattern.

If your version of libavformat was compiled with globbing support, and the provided pattern
contains at least one glob meta character among %*?[]{} that is preceded by an unescaped
"%", the pattern is interpreted like a glob() pattern, otherwise it is interpreted like a sequence
pattern.

All glob special characters %*?[]{} must be prefixed with "%". To escape a literal "%" you
shall use "%%".

For example the pattern foo-%*.jpeg will match all the filenames prefixed by "foo-" and
terminating with ".jpeg", and foo-%?%?%?.jpeg will match all the filenames prefixed with
"foo-", followed by a sequence of three characters, and terminating with ".jpeg".

This pattern type is deprecated in favor of glob and sequence.

Default value is glob_sequence.

pixel_format

Set the pixel format of the images to read. If not specified the pixel format is guessed from the first
image file in the sequence.

start_number

Set the index of the file matched by the image file pattern to start to read from. Default value is 0.

start_number_range

Set the index interval range to check when looking for the first image file in the sequence, starting
from start_number. Default value is 5.

ts_from_file

If set to 1, will set frame timestamp to modification time of image file. Note that monotonity of
timestamps is not provided: images go in the same order as without this option. Default value is 0. If
set to 2, will set frame timestamp to the modification time of the image file in nanosecond precision.

video_size

Set the video size of the images to read. If not specified the video size is guessed from the first image
file in the sequence.

20.9.1 Examples# TOC

Use ffmpeg for creating a video from the images in the file sequence img-001.jpeg,
img-002.jpeg, ..., assuming an input frame rate of 10 frames per second:

ffmpeg -framerate 10 -i ’img-%03d.jpeg’ out.mkv

As above, but start by reading from a file with index 100 in the sequence:

ffmpeg -framerate 10 -start_number 100 -i ’img-%03d.jpeg’ out.mkv

Read images matching the "*.png" glob pattern , that is all the files terminating with the ".png"
suffix:

ffmpeg -framerate 10 -pattern_type glob -i "*.png" out.mkv

20.10 libgme# TOC

The Game Music Emu library is a collection of video game music file emulators.

See http://code.google.com/p/game-music-emu/ for more information.

Some files have multiple tracks. The demuxer will pick the first track by default. The track_index
option can be used to select a different track. Track indexes start at 0. The demuxer exports the number of
tracks as tracks meta data entry.

For very large files, the max_size option may have to be adjusted.

20.11 libopenmpt# TOC

libopenmpt based module demuxer

See https://lib.openmpt.org/libopenmpt/ for more information.

Some files have multiple subsongs (tracks) this can be set with the subsong option.

It accepts the following options:

subsong

Set the subsong index. This can be either ’all’, ’auto’, or the index of the subsong. Subsong indexes
start at 0. The default is ’auto’.

The default value is to let libopenmpt choose.

layout

Set the channel layout. Valid values are 1, 2, and 4 channel layouts. The default value is STEREO.

sample_rate

Set the sample rate for libopenmpt to output. Range is from 1000 to INT_MAX. The value default is
48000.

20.12 mov/mp4/3gp/QuickTime# TOC

QuickTime / MP4 demuxer.

This demuxer accepts the following options:

enable_drefs

http://code.google.com/p/game-music-emu/
https://lib.openmpt.org/libopenmpt/

Enable loading of external tracks, disabled by default. Enabling this can theoretically leak
information in some use cases.

use_absolute_path

Allows loading of external tracks via absolute paths, disabled by default. Enabling this poses a
security risk. It should only be enabled if the source is known to be non malicious.

20.13 mpegts# TOC

MPEG-2 transport stream demuxer.

This demuxer accepts the following options:

resync_size

Set size limit for looking up a new synchronization. Default value is 65536.

fix_teletext_pts

Override teletext packet PTS and DTS values with the timestamps calculated from the PCR of the
first program which the teletext stream is part of and is not discarded. Default value is 1, set this
option to 0 if you want your teletext packet PTS and DTS values untouched.

ts_packetsize

Output option carrying the raw packet size in bytes. Show the detected raw packet size, cannot be set
by the user.

scan_all_pmts

Scan and combine all PMTs. The value is an integer with value from -1 to 1 (-1 means automatic
setting, 1 means enabled, 0 means disabled). Default value is -1.

20.14 mpjpeg# TOC

MJPEG encapsulated in multi-part MIME demuxer.

This demuxer allows reading of MJPEG, where each frame is represented as a part of
multipart/x-mixed-replace stream.

strict_mime_boundary

Default implementation applies a relaxed standard to multi-part MIME boundary detection, to
prevent regression with numerous existing endpoints not generating a proper MIME MJPEG stream.
Turning this option on by setting it to 1 will result in a stricter check of the boundary value.

20.15 rawvideo# TOC

Raw video demuxer.

This demuxer allows one to read raw video data. Since there is no header specifying the assumed video
parameters, the user must specify them in order to be able to decode the data correctly.

This demuxer accepts the following options:

framerate

Set input video frame rate. Default value is 25.

pixel_format

Set the input video pixel format. Default value is yuv420p.

video_size

Set the input video size. This value must be specified explicitly.

For example to read a rawvideo file input.raw with ffplay, assuming a pixel format of rgb24, a
video size of 320x240, and a frame rate of 10 images per second, use the command:

ffplay -f rawvideo -pixel_format rgb24 -video_size 320x240 -framerate 10 input.raw

20.16 sbg# TOC

SBaGen script demuxer.

This demuxer reads the script language used by SBaGen http://uazu.net/sbagen/ to generate binaural beats
sessions. A SBG script looks like that:

-SE
a: 300-2.5/3 440+4.5/0
b: 300-2.5/0 440+4.5/3
off: -
NOW == a
+0:07:00 == b
+0:14:00 == a
+0:21:00 == b
+0:30:00 off

A SBG script can mix absolute and relative timestamps. If the script uses either only absolute timestamps
(including the script start time) or only relative ones, then its layout is fixed, and the conversion is
straightforward. On the other hand, if the script mixes both kind of timestamps, then the NOW reference
for relative timestamps will be taken from the current time of day at the time the script is read, and the
script layout will be frozen according to that reference. That means that if the script is directly played, the
actual times will match the absolute timestamps up to the sound controller’s clock accuracy, but if the user
somehow pauses the playback or seeks, all times will be shifted accordingly.

http://uazu.net/sbagen/

20.17 tedcaptions# TOC

JSON captions used for TED Talks.

TED does not provide links to the captions, but they can be guessed from the page. The file
tools/bookmarklets.html from the FFmpeg source tree contains a bookmarklet to expose them.

This demuxer accepts the following option:

start_time

Set the start time of the TED talk, in milliseconds. The default is 15000 (15s). It is used to sync the
captions with the downloadable videos, because they include a 15s intro.

Example: convert the captions to a format most players understand:

ffmpeg -i http://www.ted.com/talks/subtitles/id/1/lang/en talk1-en.srt

21 Muxers# TOC

Muxers are configured elements in FFmpeg which allow writing multimedia streams to a particular type of
file.

When you configure your FFmpeg build, all the supported muxers are enabled by default. You can list all
available muxers using the configure option --list-muxers.

You can disable all the muxers with the configure option --disable-muxers and selectively enable /
disable single muxers with the options --enable-muxer=MUXER / --disable-muxer=MUXER.

The option -muxers of the ff* tools will display the list of enabled muxers. Use -formats to view a
combined list of enabled demuxers and muxers.

A description of some of the currently available muxers follows.

21.1 aiff# TOC

Audio Interchange File Format muxer.

21.1.1 Options# TOC

It accepts the following options:

write_id3v2

Enable ID3v2 tags writing when set to 1. Default is 0 (disabled).

http://www.ted.com/

id3v2_version

Select ID3v2 version to write. Currently only version 3 and 4 (aka. ID3v2.3 and ID3v2.4) are
supported. The default is version 4.

21.2 asf# TOC

Advanced Systems Format muxer.

Note that Windows Media Audio (wma) and Windows Media Video (wmv) use this muxer too.

21.2.1 Options# TOC

It accepts the following options:

packet_size

Set the muxer packet size. By tuning this setting you may reduce data fragmentation or muxer
overhead depending on your source. Default value is 3200, minimum is 100, maximum is 64k.

21.3 avi# TOC

Audio Video Interleaved muxer.

21.3.1 Options# TOC

It accepts the following options:

reserve_index_space

Reserve the specified amount of bytes for the OpenDML master index of each stream within the file
header. By default additional master indexes are embedded within the data packets if there is no
space left in the first master index and are linked together as a chain of indexes. This index structure
can cause problems for some use cases, e.g. third-party software strictly relying on the OpenDML
index specification or when file seeking is slow. Reserving enough index space in the file header
avoids these problems.

The required index space depends on the output file size and should be about 16 bytes per gigabyte.
When this option is omitted or set to zero the necessary index space is guessed.

write_channel_mask

Write the channel layout mask into the audio stream header.

This option is enabled by default. Disabling the channel mask can be useful in specific scenarios, e.g.
when merging multiple audio streams into one for compatibility with software that only supports a
single audio stream in AVI (see (ffmpeg-filters)the "amerge" section in the ffmpeg-filters manual).

21.4 chromaprint# TOC

Chromaprint fingerprinter

This muxer feeds audio data to the Chromaprint library, which generates a fingerprint for the provided
audio data. It takes a single signed native-endian 16-bit raw audio stream.

21.4.1 Options# TOC

silence_threshold

Threshold for detecting silence, ranges from 0 to 32767. -1 for default (required for use with the
AcoustID service).

algorithm

Algorithm index to fingerprint with.

fp_format

Format to output the fingerprint as. Accepts the following options:

‘raw’

Binary raw fingerprint

‘compressed’

Binary compressed fingerprint

‘base64’

Base64 compressed fingerprint

21.5 crc# TOC

CRC (Cyclic Redundancy Check) testing format.

This muxer computes and prints the Adler-32 CRC of all the input audio and video frames. By default
audio frames are converted to signed 16-bit raw audio and video frames to raw video before computing the
CRC.

The output of the muxer consists of a single line of the form: CRC=0xCRC, where CRC is a hexadecimal
number 0-padded to 8 digits containing the CRC for all the decoded input frames.

See also the framecrc muxer.

21.5.1 Examples# TOC

For example to compute the CRC of the input, and store it in the file out.crc:

ffmpeg -i INPUT -f crc out.crc

You can print the CRC to stdout with the command:

ffmpeg -i INPUT -f crc -

You can select the output format of each frame with ffmpeg by specifying the audio and video codec and
format. For example to compute the CRC of the input audio converted to PCM unsigned 8-bit and the
input video converted to MPEG-2 video, use the command:

ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f crc -

21.6 flv# TOC

Adobe Flash Video Format muxer.

This muxer accepts the following options:

flvflags flags

Possible values:

‘aac_seq_header_detect’

Place AAC sequence header based on audio stream data.

‘no_sequence_end’

Disable sequence end tag.

‘no_metadata’

Disable metadata tag.

‘no_duration_filesize’

Disable duration and filesize in metadata when they are equal to zero at the end of stream. (Be
used to non-seekable living stream).

‘add_keyframe_index’

Used to facilitate seeking; particularly for HTTP pseudo streaming.

21.7 dash# TOC

Dynamic Adaptive Streaming over HTTP (DASH) muxer that creates segments and manifest files
according to the MPEG-DASH standard ISO/IEC 23009-1:2014.

For more information see:

ISO DASH Specification:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c065274_ISO_IEC_23009-1_2014.zip
WebM DASH Specification:
https://sites.google.com/a/webmproject.org/wiki/adaptive-streaming/webm-dash-specification

It creates a MPD manifest file and segment files for each stream.

The segment filename might contain pre-defined identifiers used with SegmentTemplate as defined in
section 5.3.9.4.4 of the standard. Available identifiers are "$RepresentationID$", "$Number$",
"$Bandwidth$" and "$Time$".

ffmpeg -re -i <input> -map 0 -map 0 -c:a libfdk_aac -c:v libx264
-b:v:0 800k -b:v:1 300k -s:v:1 320x170 -profile:v:1 baseline
-profile:v:0 main -bf 1 -keyint_min 120 -g 120 -sc_threshold 0
-b_strategy 0 -ar:a:1 22050 -use_timeline 1 -use_template 1
-window_size 5 -adaptation_sets "id=0,streams=v id=1,streams=a"
-f dash /path/to/out.mpd

-min_seg_duration microseconds

Set the segment length in microseconds.

-window_size size

Set the maximum number of segments kept in the manifest.

-extra_window_size size

Set the maximum number of segments kept outside of the manifest before removing from disk.

-remove_at_exit remove

Enable (1) or disable (0) removal of all segments when finished.

-use_template template

Enable (1) or disable (0) use of SegmentTemplate instead of SegmentList.

-use_timeline timeline

Enable (1) or disable (0) use of SegmentTimeline in SegmentTemplate.

http://standards.iso.org/ittf/PubliclyAvailableStandards/c065274_ISO_IEC_23009-1_2014.zip
https://sites.google.com/a/webmproject.org/wiki/adaptive-streaming/webm-dash-specification

-single_file single_file

Enable (1) or disable (0) storing all segments in one file, accessed using byte ranges.

-single_file_name file_name

DASH-templated name to be used for baseURL. Implies single_file set to "1".

-init_seg_name init_name

DASH-templated name to used for the initialization segment. Default is
"init-stream$RepresentationID$.m4s"

-media_seg_name segment_name

DASH-templated name to used for the media segments. Default is
"chunk-stream$RepresentationID$-$Number%05d$.m4s"

-utc_timing_url utc_url

URL of the page that will return the UTC timestamp in ISO format. Example:
"https://time.akamai.com/?iso"

-http_user_agent user_agent

Override User-Agent field in HTTP header. Applicable only for HTTP output.

-hls_playlist hls_playlist

Generate HLS playlist files as well. The master playlist is generated with the filename master.m3u8.
One media playlist file is generated for each stream with filenames media_0.m3u8, media_1.m3u8,
etc.

-adaptation_sets adaptation_sets

Assign streams to AdaptationSets. Syntax is "id=x,streams=a,b,c id=y,streams=d,e" with x and y
being the IDs of the adaptation sets and a,b,c,d and e are the indices of the mapped streams.

To map all video (or audio) streams to an AdaptationSet, "v" (or "a") can be used as stream identifier
instead of IDs.

When no assignment is defined, this defaults to an AdaptationSet for each stream.

21.8 framecrc# TOC

Per-packet CRC (Cyclic Redundancy Check) testing format.

This muxer computes and prints the Adler-32 CRC for each audio and video packet. By default audio
frames are converted to signed 16-bit raw audio and video frames to raw video before computing the
CRC.

The output of the muxer consists of a line for each audio and video packet of the form:

stream_index, packet_dts, packet_pts, packet_duration, packet_size, 0xCRC

CRC is a hexadecimal number 0-padded to 8 digits containing the CRC of the packet.

21.8.1 Examples# TOC

For example to compute the CRC of the audio and video frames in INPUT, converted to raw audio and
video packets, and store it in the file out.crc:

ffmpeg -i INPUT -f framecrc out.crc

To print the information to stdout, use the command:

ffmpeg -i INPUT -f framecrc -

With ffmpeg, you can select the output format to which the audio and video frames are encoded before
computing the CRC for each packet by specifying the audio and video codec. For example, to compute the
CRC of each decoded input audio frame converted to PCM unsigned 8-bit and of each decoded input
video frame converted to MPEG-2 video, use the command:

ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f framecrc -

See also the crc muxer.

21.9 framehash# TOC

Per-packet hash testing format.

This muxer computes and prints a cryptographic hash for each audio and video packet. This can be used
for packet-by-packet equality checks without having to individually do a binary comparison on each.

By default audio frames are converted to signed 16-bit raw audio and video frames to raw video before
computing the hash, but the output of explicit conversions to other codecs can also be used. It uses the
SHA-256 cryptographic hash function by default, but supports several other algorithms.

The output of the muxer consists of a line for each audio and video packet of the form:

stream_index, packet_dts, packet_pts, packet_duration, packet_size, hash

hash is a hexadecimal number representing the computed hash for the packet.

hash algorithm

Use the cryptographic hash function specified by the string algorithm. Supported values include MD5,
murmur3, RIPEMD128, RIPEMD160, RIPEMD256, RIPEMD320, SHA160, SHA224, SHA256
(default), SHA512/224, SHA512/256, SHA384, SHA512, CRC32 and adler32.

21.9.1 Examples# TOC

To compute the SHA-256 hash of the audio and video frames in INPUT, converted to raw audio and video
packets, and store it in the file out.sha256:

ffmpeg -i INPUT -f framehash out.sha256

To print the information to stdout, using the MD5 hash function, use the command:

ffmpeg -i INPUT -f framehash -hash md5 -

See also the hash muxer.

21.10 framemd5# TOC

Per-packet MD5 testing format.

This is a variant of the framehash muxer. Unlike that muxer, it defaults to using the MD5 hash function.

21.10.1 Examples# TOC

To compute the MD5 hash of the audio and video frames in INPUT, converted to raw audio and video
packets, and store it in the file out.md5:

ffmpeg -i INPUT -f framemd5 out.md5

To print the information to stdout, use the command:

ffmpeg -i INPUT -f framemd5 -

See also the framehash and md5 muxers.

21.11 gif# TOC

Animated GIF muxer.

It accepts the following options:

loop

Set the number of times to loop the output. Use -1 for no loop, 0 for looping indefinitely (default).

final_delay

Force the delay (expressed in centiseconds) after the last frame. Each frame ends with a delay until
the next frame. The default is -1, which is a special value to tell the muxer to re-use the previous
delay. In case of a loop, you might want to customize this value to mark a pause for instance.

For example, to encode a gif looping 10 times, with a 5 seconds delay between the loops:

ffmpeg -i INPUT -loop 10 -final_delay 500 out.gif

Note 1: if you wish to extract the frames into separate GIF files, you need to force the image2 muxer:

ffmpeg -i INPUT -c:v gif -f image2 "out%d.gif"

Note 2: the GIF format has a very large time base: the delay between two frames can therefore not be
smaller than one centi second.

21.12 hash# TOC

Hash testing format.

This muxer computes and prints a cryptographic hash of all the input audio and video frames. This can be
used for equality checks without having to do a complete binary comparison.

By default audio frames are converted to signed 16-bit raw audio and video frames to raw video before
computing the hash, but the output of explicit conversions to other codecs can also be used. Timestamps
are ignored. It uses the SHA-256 cryptographic hash function by default, but supports several other
algorithms.

The output of the muxer consists of a single line of the form: algo=hash, where algo is a short string
representing the hash function used, and hash is a hexadecimal number representing the computed hash.

hash algorithm

Use the cryptographic hash function specified by the string algorithm. Supported values include MD5,
murmur3, RIPEMD128, RIPEMD160, RIPEMD256, RIPEMD320, SHA160, SHA224, SHA256
(default), SHA512/224, SHA512/256, SHA384, SHA512, CRC32 and adler32.

21.12.1 Examples# TOC

To compute the SHA-256 hash of the input converted to raw audio and video, and store it in the file
out.sha256:

ffmpeg -i INPUT -f hash out.sha256

To print an MD5 hash to stdout use the command:

ffmpeg -i INPUT -f hash -hash md5 -

See also the framehash muxer.

21.13 hls# TOC

Apple HTTP Live Streaming muxer that segments MPEG-TS according to the HTTP Live Streaming
(HLS) specification.

It creates a playlist file, and one or more segment files. The output filename specifies the playlist filename.

By default, the muxer creates a file for each segment produced. These files have the same name as the
playlist, followed by a sequential number and a .ts extension.

Make sure to require a closed GOP when encoding and to set the GOP size to fit your segment time
constraint.

For example, to convert an input file with ffmpeg:

ffmpeg -i in.mkv -c:v h264 -flags +cgop -g 30 -hls_time 1 out.m3u8

This example will produce the playlist, out.m3u8, and segment files: out0.ts, out1.ts, out2.ts,
etc.

See also the segment muxer, which provides a more generic and flexible implementation of a segmenter,
and can be used to perform HLS segmentation.

21.13.1 Options# TOC

This muxer supports the following options:

hls_init_time seconds

Set the initial target segment length in seconds. Default value is 0. Segment will be cut on the next
key frame after this time has passed on the first m3u8 list. After the initial playlist is filled ffmpeg
will cut segments at duration equal to hls_time

hls_time seconds

Set the target segment length in seconds. Default value is 2. Segment will be cut on the next key
frame after this time has passed.

hls_list_size size

Set the maximum number of playlist entries. If set to 0 the list file will contain all the segments.
Default value is 5.

hls_ts_options options_list

Set output format options using a :-separated list of key=value parameters. Values containing :
special characters must be escaped.

hls_wrap wrap

This is a deprecated option, you can use hls_list_size and hls_flags
delete_segments instead it

This option is useful to avoid to fill the disk with many segment files, and limits the maximum
number of segment files written to disk to wrap.

hls_start_number_source

Start the playlist sequence number (#EXT-X-MEDIA-SEQUENCE) according to the specified
source. Unless hls_flags single_file is set, it also specifies source of starting sequence
numbers of segment and subtitle filenames. In any case, if hls_flags append_list is set and
read playlist sequence number is greater than the specified start sequence number, then that value will
be used as start value.

It accepts the following values:

generic (default)

Set the starting sequence numbers according to start_number option value.

epoch

The start number will be the seconds since epoch (1970-01-01 00:00:00)

datetime

The start number will be based on the current date/time as YYYYmmddHHMMSS. e.g.
20161231235759.

start_number number

Start the playlist sequence number (#EXT-X-MEDIA-SEQUENCE) from the specified number when
hls_start_number_source value is generic. (This is the default case.) Unless hls_flags
single_file is set, it also specifies starting sequence numbers of segment and subtitle filenames.
Default value is 0.

hls_allow_cache allowcache

Explicitly set whether the client MAY (1) or MUST NOT (0) cache media segments.

hls_base_url baseurl

Append baseurl to every entry in the playlist. Useful to generate playlists with absolute paths.

Note that the playlist sequence number must be unique for each segment and it is not to be confused
with the segment filename sequence number which can be cyclic, for example if the wrap option is
specified.

hls_segment_filename filename

Set the segment filename. Unless hls_flags single_file is set, filename is used as a string
format with the segment number:

ffmpeg -i in.nut -hls_segment_filename ’file%03d.ts’ out.m3u8

This example will produce the playlist, out.m3u8, and segment files: file000.ts,
file001.ts, file002.ts, etc.

filename may contain full path or relative path specification, but only the file name part without any
path info will be contained in the m3u8 segment list. Should a relative path be specified, the path of
the created segment files will be relative to the current working directory. When use_localtime_mkdir
is set, the whole expanded value of filename will be written into the m3u8 segment list.

use_localtime

Use strftime() on filename to expand the segment filename with localtime. The segment number is
also available in this mode, but to use it, you need to specify second_level_segment_index hls_flag
and %%d will be the specifier.

ffmpeg -i in.nut -use_localtime 1 -hls_segment_filename ’file-%Y%m%d-%s.ts’ out.m3u8

This example will produce the playlist, out.m3u8, and segment files:
file-20160215-1455569023.ts, file-20160215-1455569024.ts, etc. Note: On
some systems/environments, the %s specifier is not available. See strftime() documentation.

ffmpeg -i in.nut -use_localtime 1 -hls_flags second_level_segment_index -hls_segment_filename ’file-%Y%m%d-%%04d.ts’ out.m3u8

This example will produce the playlist, out.m3u8, and segment files:
file-20160215-0001.ts, file-20160215-0002.ts, etc.

use_localtime_mkdir

Used together with -use_localtime, it will create all subdirectories which is expanded in filename.

ffmpeg -i in.nut -use_localtime 1 -use_localtime_mkdir 1 -hls_segment_filename ’%Y%m%d/file-%Y%m%d-%s.ts’ out.m3u8

This example will create a directory 201560215 (if it does not exist), and then produce the playlist,
out.m3u8, and segment files: 20160215/file-20160215-1455569023.ts,
20160215/file-20160215-1455569024.ts, etc.

ffmpeg -i in.nut -use_localtime 1 -use_localtime_mkdir 1 -hls_segment_filename ’%Y/%m/%d/file-%Y%m%d-%s.ts’ out.m3u8

This example will create a directory hierarchy 2016/02/15 (if any of them do not exist), and then
produce the playlist, out.m3u8, and segment files:
2016/02/15/file-20160215-1455569023.ts,
2016/02/15/file-20160215-1455569024.ts, etc.

hls_key_info_file key_info_file

Use the information in key_info_file for segment encryption. The first line of key_info_file specifies
the key URI written to the playlist. The key URL is used to access the encryption key during
playback. The second line specifies the path to the key file used to obtain the key during the
encryption process. The key file is read as a single packed array of 16 octets in binary format. The
optional third line specifies the initialization vector (IV) as a hexadecimal string to be used instead of
the segment sequence number (default) for encryption. Changes to key_info_file will result in
segment encryption with the new key/IV and an entry in the playlist for the new key URI/IV if
hls_flags periodic_rekey is enabled.

Key info file format:

key URI
key file path
IV (optional)

Example key URIs:

http://server/file.key
/path/to/file.key
file.key

Example key file paths:

file.key
/path/to/file.key

Example IV:

0123456789ABCDEF0123456789ABCDEF

Key info file example:

http://server/file.key
/path/to/file.key
0123456789ABCDEF0123456789ABCDEF

Example shell script:

#!/bin/sh
BASE_URL=${1:-’.’}
openssl rand 16 > file.key
echo $BASE_URL/file.key > file.keyinfo
echo file.key >> file.keyinfo
echo $(openssl rand -hex 16) >> file.keyinfo
ffmpeg -f lavfi -re -i testsrc -c:v h264 -hls_flags delete_segments \
 -hls_key_info_file file.keyinfo out.m3u8

-hls_enc enc

Enable (1) or disable (0) the AES128 encryption. When enabled every segment generated is
encrypted and the encryption key is saved as playlist name.key.

-hls_enc_key key

Hex-coded 16byte key to encrypt the segments, by default it is randomly generated.

-hls_enc_key_url keyurl

If set, keyurl is prepended instead of baseurl to the key filename in the playlist.

-hls_enc_iv iv

Hex-coded 16byte initialization vector for every segment instead of the autogenerated ones.

hls_segment_type flags

Possible values:

‘mpegts’

If this flag is set, the hls segment files will format to mpegts. the mpegts files is used in all hls
versions.

‘fmp4’

If this flag is set, the hls segment files will format to fragment mp4 looks like dash. the fmp4
files is used in hls after version 7.

hls_fmp4_init_filename filename

set filename to the fragment files header file, default filename is init.mp4.

hls_flags flags

Possible values:

‘single_file’

If this flag is set, the muxer will store all segments in a single MPEG-TS file, and will use byte
ranges in the playlist. HLS playlists generated with this way will have the version number 4. For example:

ffmpeg -i in.nut -hls_flags single_file out.m3u8

Will produce the playlist, out.m3u8, and a single segment file, out.ts.

‘delete_segments’

Segment files removed from the playlist are deleted after a period of time equal to the duration
of the segment plus the duration of the playlist.

‘append_list’

Append new segments into the end of old segment list, and remove the #EXT-X-ENDLIST
from the old segment list.

‘round_durations’

Round the duration info in the playlist file segment info to integer values, instead of using
floating point.

‘discont_start’

Add the #EXT-X-DISCONTINUITY tag to the playlist, before the first segment’s information.

‘omit_endlist’

Do not append the EXT-X-ENDLIST tag at the end of the playlist.

‘periodic_rekey’

The file specified by hls_key_info_file will be checked periodically and detect updates
to the encryption info. Be sure to replace this file atomically, including the file containing the
AES encryption key.

‘independent_segments’

Add the #EXT-X-INDEPENDENT-SEGMENTS to playlists that has video segments and when
all the segments of that playlist are guaranteed to start with a Key frame.

‘split_by_time’

Allow segments to start on frames other than keyframes. This improves behavior on some
players when the time between keyframes is inconsistent, but may make things worse on others,
and can cause some oddities during seeking. This flag should be used with the hls_time
option.

‘program_date_time’

Generate EXT-X-PROGRAM-DATE-TIME tags.

‘second_level_segment_index’

Makes it possible to use segment indexes as %%d in hls_segment_filename expression besides
date/time values when use_localtime is on. To get fixed width numbers with trailing zeroes,
%%0xd format is available where x is the required width.

‘second_level_segment_size’

Makes it possible to use segment sizes (counted in bytes) as %%s in hls_segment_filename
expression besides date/time values when use_localtime is on. To get fixed width numbers with
trailing zeroes, %%0xs format is available where x is the required width.

‘second_level_segment_duration’

Makes it possible to use segment duration (calculated in microseconds) as %%t in
hls_segment_filename expression besides date/time values when use_localtime is on. To get
fixed width numbers with trailing zeroes, %%0xt format is available where x is the required
width.

ffmpeg -i sample.mpeg \
 -f hls -hls_time 3 -hls_list_size 5 \
 -hls_flags second_level_segment_index+second_level_segment_size+second_level_segment_duration \
 -use_localtime 1 -use_localtime_mkdir 1 -hls_segment_filename "segment_%Y%m%d%H%M%S_%%04d_%%08s_%%013t.ts" stream.m3u8

This will produce segments like this:
segment_20170102194334_0003_00122200_0000003000000.ts,
segment_20170102194334_0004_00120072_0000003000000.ts etc.

‘temp_file’

Write segment data to filename.tmp and rename to filename only once the segment is complete.
A webserver serving up segments can be configured to reject requests to *.tmp to prevent access
to in-progress segments before they have been added to the m3u8 playlist.

hls_playlist_type event

Emit #EXT-X-PLAYLIST-TYPE:EVENT in the m3u8 header. Forces hls_list_size to 0; the
playlist can only be appended to.

hls_playlist_type vod

Emit #EXT-X-PLAYLIST-TYPE:VOD in the m3u8 header. Forces hls_list_size to 0; the
playlist must not change.

method

Use the given HTTP method to create the hls files.

ffmpeg -re -i in.ts -f hls -method PUT http://example.com/live/out.m3u8

This example will upload all the mpegts segment files to the HTTP server using the HTTP PUT
method, and update the m3u8 files every refresh times using the same method. Note that the
HTTP server must support the given method for uploading files.

http_user_agent

Override User-Agent field in HTTP header. Applicable only for HTTP output.

var_stream_map

Map string which specifies how to group the audio, video and subtitle streams into different variant
streams. The variant stream groups are separated by space. Expected string format is like this "a:0,v:0
a:1,v:1". Here a:, v:, s: are the keys to specify audio, video and subtitle streams respectively.
Allowed values are 0 to 9 (limited just based on practical usage).

ffmpeg -re -i in.ts -b:v:0 1000k -b:v:1 256k -b:a:0 64k -b:a:1 32k \
 -map 0:v -map 0:a -map 0:v -map 0:a -f hls -var_stream_map "v:0,a:0 v:1,a:1" \
 http://example.com/live/out.m3u8

This example creates two hls variant streams. The first variant stream will contain video stream of
bitrate 1000k and audio stream of bitrate 64k and the second variant stream will contain video stream
of bitrate 256k and audio stream of bitrate 32k. Here, two media playlist with file names out_1.m3u8
and out_2.m3u8 will be created.

ffmpeg -re -i in.ts -b:v:0 1000k -b:v:1 256k -b:a:0 64k \
 -map 0:v -map 0:a -map 0:v -f hls -var_stream_map "v:0 a:0 v:1" \
 http://example.com/live/out.m3u8

This example creates three hls variant streams. The first variant stream will be a video only stream
with video bitrate 1000k, the second variant stream will be an audio only stream with bitrate 64k and
the third variant stream will be a video only stream with bitrate 256k. Here, three media playlist with
file names out_1.m3u8, out_2.m3u8 and out_3.m3u8 will be created.

By default, a single hls variant containing all the encoded streams is created.

master_pl_name

Create HLS master playlist with the given name.

ffmpeg -re -i in.ts -f hls -master_pl_name master.m3u8 http://example.com/live/out.m3u8

This example creates HLS master playlist with name master.m3u8 and it is published at
http://example.com/live/

master_pl_publish_rate

Publish master play list repeatedly every after specified number of segment intervals.

ffmpeg -re -i in.ts -f hls -master_pl_name master.m3u8 \
-hls_time 2 -master_pl_publish_rate 30 http://example.com/live/out.m3u8

This example creates HLS master playlist with name master.m3u8 and keep publishing it repeatedly
every after 30 segments i.e. every after 60s.

http_persistent

Use persistent HTTP connections. Applicable only for HTTP output.

21.14 ico# TOC

ICO file muxer.

Microsoft’s icon file format (ICO) has some strict limitations that should be noted:

Size cannot exceed 256 pixels in any dimension
Only BMP and PNG images can be stored
If a BMP image is used, it must be one of the following pixel formats:

BMP Bit Depth FFmpeg Pixel Format
1bit pal8
4bit pal8
8bit pal8
16bit rgb555le
24bit bgr24
32bit bgra

If a BMP image is used, it must use the BITMAPINFOHEADER DIB header
If a PNG image is used, it must use the rgba pixel format

21.15 image2# TOC

Image file muxer.

The image file muxer writes video frames to image files.

The output filenames are specified by a pattern, which can be used to produce sequentially numbered
series of files. The pattern may contain the string "%d" or "%0Nd", this string specifies the position of the
characters representing a numbering in the filenames. If the form "%0Nd" is used, the string representing
the number in each filename is 0-padded to N digits. The literal character ’%’ can be specified in the
pattern with the string "%%".

If the pattern contains "%d" or "%0Nd", the first filename of the file list specified will contain the number
1, all the following numbers will be sequential.

The pattern may contain a suffix which is used to automatically determine the format of the image files to
write.

For example the pattern "img-%03d.bmp" will specify a sequence of filenames of the form
img-001.bmp, img-002.bmp, ..., img-010.bmp, etc. The pattern "img%%-%d.jpg" will specify a
sequence of filenames of the form img%-1.jpg, img%-2.jpg, ..., img%-10.jpg, etc.

21.15.1 Examples# TOC

The following example shows how to use ffmpeg for creating a sequence of files img-001.jpeg,
img-002.jpeg, ..., taking one image every second from the input video:

ffmpeg -i in.avi -vsync cfr -r 1 -f image2 ’img-%03d.jpeg’

Note that with ffmpeg, if the format is not specified with the -f option and the output filename specifies
an image file format, the image2 muxer is automatically selected, so the previous command can be written
as:

ffmpeg -i in.avi -vsync cfr -r 1 ’img-%03d.jpeg’

Note also that the pattern must not necessarily contain "%d" or "%0Nd", for example to create a single
image file img.jpeg from the start of the input video you can employ the command:

ffmpeg -i in.avi -f image2 -frames:v 1 img.jpeg

The strftime option allows you to expand the filename with date and time information. Check the
documentation of the strftime() function for the syntax.

For example to generate image files from the strftime() "%Y-%m-%d_%H-%M-%S" pattern, the
following ffmpeg command can be used:

ffmpeg -f v4l2 -r 1 -i /dev/video0 -f image2 -strftime 1 "%Y-%m-%d_%H-%M-%S.jpg"

You can set the file name with current frame’s PTS:

ffmpeg -f v4l2 -r 1 -i /dev/video0 -copyts -f image2 -frame_pts true %d.jpg"

21.15.2 Options# TOC

frame_pts

If set to 1, expand the filename with pts from pkt->pts. Default value is 0.

start_number

Start the sequence from the specified number. Default value is 1.

update

If set to 1, the filename will always be interpreted as just a filename, not a pattern, and the
corresponding file will be continuously overwritten with new images. Default value is 0.

strftime

If set to 1, expand the filename with date and time information from strftime(). Default value is
0.

The image muxer supports the .Y.U.V image file format. This format is special in that that each image
frame consists of three files, for each of the YUV420P components. To read or write this image file
format, specify the name of the ’.Y’ file. The muxer will automatically open the ’.U’ and ’.V’ files as
required.

21.16 matroska# TOC

Matroska container muxer.

This muxer implements the matroska and webm container specs.

21.16.1 Metadata# TOC

The recognized metadata settings in this muxer are:

title

Set title name provided to a single track.

language

Specify the language of the track in the Matroska languages form.

The language can be either the 3 letters bibliographic ISO-639-2 (ISO 639-2/B) form (like "fre" for
French), or a language code mixed with a country code for specialities in languages (like "fre-ca" for
Canadian French).

stereo_mode

Set stereo 3D video layout of two views in a single video track.

The following values are recognized:

‘mono’

video is not stereo

‘left_right’

Both views are arranged side by side, Left-eye view is on the left

‘bottom_top’

Both views are arranged in top-bottom orientation, Left-eye view is at bottom

‘top_bottom’

Both views are arranged in top-bottom orientation, Left-eye view is on top

‘checkerboard_rl’

Each view is arranged in a checkerboard interleaved pattern, Left-eye view being first

‘checkerboard_lr’

Each view is arranged in a checkerboard interleaved pattern, Right-eye view being first

‘row_interleaved_rl’

Each view is constituted by a row based interleaving, Right-eye view is first row

‘row_interleaved_lr’

Each view is constituted by a row based interleaving, Left-eye view is first row

‘col_interleaved_rl’

Both views are arranged in a column based interleaving manner, Right-eye view is first column

‘col_interleaved_lr’

Both views are arranged in a column based interleaving manner, Left-eye view is first column

‘anaglyph_cyan_red’

All frames are in anaglyph format viewable through red-cyan filters

‘right_left’

Both views are arranged side by side, Right-eye view is on the left

‘anaglyph_green_magenta’

All frames are in anaglyph format viewable through green-magenta filters

‘block_lr’

Both eyes laced in one Block, Left-eye view is first

‘block_rl’

Both eyes laced in one Block, Right-eye view is first

For example a 3D WebM clip can be created using the following command line:

ffmpeg -i sample_left_right_clip.mpg -an -c:v libvpx -metadata stereo_mode=left_right -y stereo_clip.webm

21.16.2 Options# TOC

This muxer supports the following options:

reserve_index_space

By default, this muxer writes the index for seeking (called cues in Matroska terms) at the end of the
file, because it cannot know in advance how much space to leave for the index at the beginning of the
file. However for some use cases – e.g. streaming where seeking is possible but slow – it is useful to
put the index at the beginning of the file.

If this option is set to a non-zero value, the muxer will reserve a given amount of space in the file
header and then try to write the cues there when the muxing finishes. If the available space does not
suffice, muxing will fail. A safe size for most use cases should be about 50kB per hour of video.

Note that cues are only written if the output is seekable and this option will have no effect if it is not.

21.17 md5# TOC

MD5 testing format.

This is a variant of the hash muxer. Unlike that muxer, it defaults to using the MD5 hash function.

21.17.1 Examples# TOC

To compute the MD5 hash of the input converted to raw audio and video, and store it in the file
out.md5:

ffmpeg -i INPUT -f md5 out.md5

You can print the MD5 to stdout with the command:

ffmpeg -i INPUT -f md5 -

See also the hash and framemd5 muxers.

21.18 mov, mp4, ismv# TOC

MOV/MP4/ISMV (Smooth Streaming) muxer.

The mov/mp4/ismv muxer supports fragmentation. Normally, a MOV/MP4 file has all the metadata about
all packets stored in one location (written at the end of the file, it can be moved to the start for better
playback by adding faststart to the movflags, or using the qt-faststart tool). A fragmented file
consists of a number of fragments, where packets and metadata about these packets are stored together.
Writing a fragmented file has the advantage that the file is decodable even if the writing is interrupted
(while a normal MOV/MP4 is undecodable if it is not properly finished), and it requires less memory
when writing very long files (since writing normal MOV/MP4 files stores info about every single packet
in memory until the file is closed). The downside is that it is less compatible with other applications.

21.18.1 Options# TOC

Fragmentation is enabled by setting one of the AVOptions that define how to cut the file into fragments:

-moov_size bytes

Reserves space for the moov atom at the beginning of the file instead of placing the moov atom at the
end. If the space reserved is insufficient, muxing will fail.

-movflags frag_keyframe

Start a new fragment at each video keyframe.

-frag_duration duration

Create fragments that are duration microseconds long.

-frag_size size

Create fragments that contain up to size bytes of payload data.

-movflags frag_custom

Allow the caller to manually choose when to cut fragments, by calling av_write_frame(ctx,
NULL) to write a fragment with the packets written so far. (This is only useful with other
applications integrating libavformat, not from ffmpeg.)

-min_frag_duration duration

Don’t create fragments that are shorter than duration microseconds long.

If more than one condition is specified, fragments are cut when one of the specified conditions is fulfilled.
The exception to this is -min_frag_duration, which has to be fulfilled for any of the other
conditions to apply.

Additionally, the way the output file is written can be adjusted through a few other options:

-movflags empty_moov

Write an initial moov atom directly at the start of the file, without describing any samples in it.
Generally, an mdat/moov pair is written at the start of the file, as a normal MOV/MP4 file, containing
only a short portion of the file. With this option set, there is no initial mdat atom, and the moov atom
only describes the tracks but has a zero duration.

This option is implicitly set when writing ismv (Smooth Streaming) files.

-movflags separate_moof

Write a separate moof (movie fragment) atom for each track. Normally, packets for all tracks are
written in a moof atom (which is slightly more efficient), but with this option set, the muxer writes
one moof/mdat pair for each track, making it easier to separate tracks.

This option is implicitly set when writing ismv (Smooth Streaming) files.

-movflags faststart

Run a second pass moving the index (moov atom) to the beginning of the file. This operation can take
a while, and will not work in various situations such as fragmented output, thus it is not enabled by
default.

-movflags rtphint

Add RTP hinting tracks to the output file.

-movflags disable_chpl

Disable Nero chapter markers (chpl atom). Normally, both Nero chapters and a QuickTime chapter
track are written to the file. With this option set, only the QuickTime chapter track will be written.
Nero chapters can cause failures when the file is reprocessed with certain tagging programs, like
mp3Tag 2.61a and iTunes 11.3, most likely other versions are affected as well.

-movflags omit_tfhd_offset

Do not write any absolute base_data_offset in tfhd atoms. This avoids tying fragments to absolute
byte positions in the file/streams.

-movflags default_base_moof

Similarly to the omit_tfhd_offset, this flag avoids writing the absolute base_data_offset field in tfhd
atoms, but does so by using the new default-base-is-moof flag instead. This flag is new from
14496-12:2012. This may make the fragments easier to parse in certain circumstances (avoiding
basing track fragment location calculations on the implicit end of the previous track fragment).

-write_tmcd

Specify on to force writing a timecode track, off to disable it and auto to write a timecode track
only for mov and mp4 output (default).

-movflags negative_cts_offsets

Enables utilization of version 1 of the CTTS box, in which the CTS offsets can be negative. This
enables the initial sample to have DTS/CTS of zero, and reduces the need for edit lists for some cases
such as video tracks with B-frames. Additionally, eases conformance with the DASH-IF
interoperability guidelines.

21.18.2 Example# TOC

Smooth Streaming content can be pushed in real time to a publishing point on IIS with this muxer.
Example:

ffmpeg -re <normal input/transcoding options> -movflags isml+frag_keyframe -f ismv http://server/publishingpoint.isml/Streams(Encoder1)

21.18.3 Audible AAX# TOC

Audible AAX files are encrypted M4B files, and they can be decrypted by specifying a 4 byte activation
secret.

ffmpeg -activation_bytes 1CEB00DA -i test.aax -vn -c:a copy output.mp4

21.19 mp3# TOC

The MP3 muxer writes a raw MP3 stream with the following optional features:

An ID3v2 metadata header at the beginning (enabled by default). Versions 2.3 and 2.4 are supported,
the id3v2_version private option controls which one is used (3 or 4). Setting id3v2_version
to 0 disables the ID3v2 header completely.

The muxer supports writing attached pictures (APIC frames) to the ID3v2 header. The pictures are
supplied to the muxer in form of a video stream with a single packet. There can be any number of
those streams, each will correspond to a single APIC frame. The stream metadata tags title and
comment map to APIC description and picture type respectively. See http://id3.org/id3v2.4.0-frames
for allowed picture types.

Note that the APIC frames must be written at the beginning, so the muxer will buffer the audio
frames until it gets all the pictures. It is therefore advised to provide the pictures as soon as possible
to avoid excessive buffering.

A Xing/LAME frame right after the ID3v2 header (if present). It is enabled by default, but will be
written only if the output is seekable. The write_xing private option can be used to disable it. The
frame contains various information that may be useful to the decoder, like the audio duration or
encoder delay.
A legacy ID3v1 tag at the end of the file (disabled by default). It may be enabled with the

http://id3.org/id3v2.4.0-frames

write_id3v1 private option, but as its capabilities are very limited, its usage is not recommended.

Examples:

Write an mp3 with an ID3v2.3 header and an ID3v1 footer:

ffmpeg -i INPUT -id3v2_version 3 -write_id3v1 1 out.mp3

To attach a picture to an mp3 file select both the audio and the picture stream with map:

ffmpeg -i input.mp3 -i cover.png -c copy -map 0 -map 1
-metadata:s:v title="Album cover" -metadata:s:v comment="Cover (Front)" out.mp3

Write a "clean" MP3 without any extra features:

ffmpeg -i input.wav -write_xing 0 -id3v2_version 0 out.mp3

21.20 mpegts# TOC

MPEG transport stream muxer.

This muxer implements ISO 13818-1 and part of ETSI EN 300 468.

The recognized metadata settings in mpegts muxer are service_provider and service_name. If
they are not set the default for service_provider is ‘FFmpeg’ and the default for service_name
is ‘Service01’.

21.20.1 Options# TOC

The muxer options are:

mpegts_transport_stream_id integer

Set the ‘transport_stream_id’. This identifies a transponder in DVB. Default is 0x0001.

mpegts_original_network_id integer

Set the ‘original_network_id’. This is unique identifier of a network in DVB. Its main use is
in the unique identification of a service through the path ‘Original_Network_ID,
Transport_Stream_ID’. Default is 0x0001.

mpegts_service_id integer

Set the ‘service_id’, also known as program in DVB. Default is 0x0001.

mpegts_service_type integer

Set the program ‘service_type’. Default is digital_tv. Accepts the following options:

‘hex_value’

Any hexdecimal value between 0x01 to 0xff as defined in ETSI 300 468.

‘digital_tv’

Digital TV service.

‘digital_radio’

Digital Radio service.

‘teletext’

Teletext service.

‘advanced_codec_digital_radio’

Advanced Codec Digital Radio service.

‘mpeg2_digital_hdtv’

MPEG2 Digital HDTV service.

‘advanced_codec_digital_sdtv’

Advanced Codec Digital SDTV service.

‘advanced_codec_digital_hdtv’

Advanced Codec Digital HDTV service.

mpegts_pmt_start_pid integer

Set the first PID for PMT. Default is 0x1000. Max is 0x1f00.

mpegts_start_pid integer

Set the first PID for data packets. Default is 0x0100. Max is 0x0f00.

mpegts_m2ts_mode boolean

Enable m2ts mode if set to 1. Default value is -1 which disables m2ts mode.

muxrate integer

Set a constant muxrate. Default is VBR.

pes_payload_size integer

Set minimum PES packet payload in bytes. Default is 2930.

mpegts_flags flags

Set mpegts flags. Accepts the following options:

‘resend_headers’

Reemit PAT/PMT before writing the next packet.

‘latm’

Use LATM packetization for AAC.

‘pat_pmt_at_frames’

Reemit PAT and PMT at each video frame.

‘system_b’

Conform to System B (DVB) instead of System A (ATSC).

‘initial_discontinuity’

Mark the initial packet of each stream as discontinuity.

resend_headers integer

Reemit PAT/PMT before writing the next packet. This option is deprecated: use mpegts_flags
instead.

mpegts_copyts boolean

Preserve original timestamps, if value is set to 1. Default value is -1, which results in shifting
timestamps so that they start from 0.

omit_video_pes_length boolean

Omit the PES packet length for video packets. Default is 1 (true).

pcr_period integer

Override the default PCR retransmission time in milliseconds. Ignored if variable muxrate is selected.
Default is 20.

pat_period double

Maximum time in seconds between PAT/PMT tables.

sdt_period double

Maximum time in seconds between SDT tables.

tables_version integer

Set PAT, PMT and SDT version (default 0, valid values are from 0 to 31, inclusively). This option
allows updating stream structure so that standard consumer may detect the change. To do so, reopen
output AVFormatContext (in case of API usage) or restart ffmpeg instance, cyclically changing
tables_version value:

ffmpeg -i source1.ts -codec copy -f mpegts -tables_version 0 udp://1.1.1.1:1111
ffmpeg -i source2.ts -codec copy -f mpegts -tables_version 1 udp://1.1.1.1:1111
...
ffmpeg -i source3.ts -codec copy -f mpegts -tables_version 31 udp://1.1.1.1:1111
ffmpeg -i source1.ts -codec copy -f mpegts -tables_version 0 udp://1.1.1.1:1111
ffmpeg -i source2.ts -codec copy -f mpegts -tables_version 1 udp://1.1.1.1:1111
...

21.20.2 Example# TOC

ffmpeg -i file.mpg -c copy \
 -mpegts_original_network_id 0x1122 \
 -mpegts_transport_stream_id 0x3344 \
 -mpegts_service_id 0x5566 \
 -mpegts_pmt_start_pid 0x1500 \
 -mpegts_start_pid 0x150 \
 -metadata service_provider="Some provider" \
 -metadata service_name="Some Channel" \
 out.ts

21.21 mxf, mxf_d10# TOC

MXF muxer.

21.21.1 Options# TOC

The muxer options are:

store_user_comments bool

Set if user comments should be stored if available or never. IRT D-10 does not allow user comments.
The default is thus to write them for mxf but not for mxf_d10

21.22 null# TOC

Null muxer.

This muxer does not generate any output file, it is mainly useful for testing or benchmarking purposes.

For example to benchmark decoding with ffmpeg you can use the command:

ffmpeg -benchmark -i INPUT -f null out.null

Note that the above command does not read or write the out.null file, but specifying the output file is
required by the ffmpeg syntax.

Alternatively you can write the command as:

ffmpeg -benchmark -i INPUT -f null -

21.23 nut# TOC

-syncpoints flags

Change the syncpoint usage in nut:

default use the normal low-overhead seeking aids.
none do not use the syncpoints at all, reducing the overhead but
making the stream non-seekable;

Use of this option is not recommended, as the resulting files are very damage sensitive and
seeking is not possible. Also in general the overhead from syncpoints is negligible. Note,
-write_index 0 can be used to disable all growing data tables, allowing to mux endless
streams with limited memory and without these disadvantages.

timestamped extend the syncpoint with a wallclock field.

The none and timestamped flags are experimental.

-write_index bool

Write index at the end, the default is to write an index.

ffmpeg -i INPUT -f_strict experimental -syncpoints none - | processor

21.24 ogg# TOC

Ogg container muxer.

-page_duration duration

Preferred page duration, in microseconds. The muxer will attempt to create pages that are
approximately duration microseconds long. This allows the user to compromise between seek
granularity and container overhead. The default is 1 second. A value of 0 will fill all segments,
making pages as large as possible. A value of 1 will effectively use 1 packet-per-page in most
situations, giving a small seek granularity at the cost of additional container overhead.

-serial_offset value

Serial value from which to set the streams serial number. Setting it to different and sufficiently large
values ensures that the produced ogg files can be safely chained.

21.25 segment, stream_segment, ssegment# TOC

Basic stream segmenter.

This muxer outputs streams to a number of separate files of nearly fixed duration. Output filename pattern
can be set in a fashion similar to image2, or by using a strftime template if the strftime option is
enabled.

stream_segment is a variant of the muxer used to write to streaming output formats, i.e. which do not
require global headers, and is recommended for outputting e.g. to MPEG transport stream segments.
ssegment is a shorter alias for stream_segment.

Every segment starts with a keyframe of the selected reference stream, which is set through the
reference_stream option.

Note that if you want accurate splitting for a video file, you need to make the input key frames correspond
to the exact splitting times expected by the segmenter, or the segment muxer will start the new segment
with the key frame found next after the specified start time.

The segment muxer works best with a single constant frame rate video.

Optionally it can generate a list of the created segments, by setting the option segment_list. The list type is
specified by the segment_list_type option. The entry filenames in the segment list are set by default to the
basename of the corresponding segment files.

See also the hls muxer, which provides a more specific implementation for HLS segmentation.

21.25.1 Options# TOC

The segment muxer supports the following options:

increment_tc 1|0

if set to 1, increment timecode between each segment If this is selected, the input need to have a
timecode in the first video stream. Default value is 0.

reference_stream specifier

Set the reference stream, as specified by the string specifier. If specifier is set to auto, the reference
is chosen automatically. Otherwise it must be a stream specifier (see the “Stream specifiers” chapter
in the ffmpeg manual) which specifies the reference stream. The default value is auto.

segment_format format

Override the inner container format, by default it is guessed by the filename extension.

segment_format_options options_list

Set output format options using a :-separated list of key=value parameters. Values containing the :
special character must be escaped.

segment_list name

Generate also a listfile named name. If not specified no listfile is generated.

segment_list_flags flags

Set flags affecting the segment list generation.

It currently supports the following flags:

‘cache’

Allow caching (only affects M3U8 list files).

‘live’

Allow live-friendly file generation.

segment_list_size size

Update the list file so that it contains at most size segments. If 0 the list file will contain all the
segments. Default value is 0.

segment_list_entry_prefix prefix

Prepend prefix to each entry. Useful to generate absolute paths. By default no prefix is applied.

segment_list_type type

Select the listing format.

The following values are recognized:

‘flat’

Generate a flat list for the created segments, one segment per line.

‘csv, ext’

Generate a list for the created segments, one segment per line, each line matching the format
(comma-separated values):

segment_filename,segment_start_time,segment_end_time

segment_filename is the name of the output file generated by the muxer according to the
provided pattern. CSV escaping (according to RFC4180) is applied if required.

segment_start_time and segment_end_time specify the segment start and end time expressed in
seconds.

A list file with the suffix ".csv" or ".ext" will auto-select this format.

‘ext’ is deprecated in favor or ‘csv’.

‘ffconcat’

Generate an ffconcat file for the created segments. The resulting file can be read using the
FFmpeg concat demuxer.

A list file with the suffix ".ffcat" or ".ffconcat" will auto-select this format.

‘m3u8’

Generate an extended M3U8 file, version 3, compliant with
http://tools.ietf.org/id/draft-pantos-http-live-streaming.

A list file with the suffix ".m3u8" will auto-select this format.

If not specified the type is guessed from the list file name suffix.

segment_time time

Set segment duration to time, the value must be a duration specification. Default value is "2". See also
the segment_times option.

Note that splitting may not be accurate, unless you force the reference stream key-frames at the given
time. See the introductory notice and the examples below.

segment_atclocktime 1|0

If set to "1" split at regular clock time intervals starting from 00:00 o’clock. The time value specified
in segment_time is used for setting the length of the splitting interval.

For example with segment_time set to "900" this makes it possible to create files at 12:00
o’clock, 12:15, 12:30, etc.

Default value is "0".

http://tools.ietf.org/id/draft-pantos-http-live-streaming

segment_clocktime_offset duration

Delay the segment splitting times with the specified duration when using
segment_atclocktime.

For example with segment_time set to "900" and segment_clocktime_offset set to "300"
this makes it possible to create files at 12:05, 12:20, 12:35, etc.

Default value is "0".

segment_clocktime_wrap_duration duration

Force the segmenter to only start a new segment if a packet reaches the muxer within the specified
duration after the segmenting clock time. This way you can make the segmenter more resilient to
backward local time jumps, such as leap seconds or transition to standard time from daylight savings
time.

Default is the maximum possible duration which means starting a new segment regardless of the
elapsed time since the last clock time.

segment_time_delta delta

Specify the accuracy time when selecting the start time for a segment, expressed as a duration
specification. Default value is "0".

When delta is specified a key-frame will start a new segment if its PTS satisfies the relation:

PTS >= start_time - time_delta

This option is useful when splitting video content, which is always split at GOP boundaries, in case a
key frame is found just before the specified split time.

In particular may be used in combination with the ffmpeg option force_key_frames. The key frame
times specified by force_key_frames may not be set accurately because of rounding issues, with the
consequence that a key frame time may result set just before the specified time. For constant frame
rate videos a value of 1/(2*frame_rate) should address the worst case mismatch between the
specified time and the time set by force_key_frames.

segment_times times

Specify a list of split points. times contains a list of comma separated duration specifications, in
increasing order. See also the segment_time option.

segment_frames frames

Specify a list of split video frame numbers. frames contains a list of comma separated integer
numbers, in increasing order.

This option specifies to start a new segment whenever a reference stream key frame is found and the
sequential number (starting from 0) of the frame is greater or equal to the next value in the list.

segment_wrap limit

Wrap around segment index once it reaches limit.

segment_start_number number

Set the sequence number of the first segment. Defaults to 0.

strftime 1|0

Use the strftime function to define the name of the new segments to write. If this is selected, the
output segment name must contain a strftime function template. Default value is 0.

break_non_keyframes 1|0

If enabled, allow segments to start on frames other than keyframes. This improves behavior on some
players when the time between keyframes is inconsistent, but may make things worse on others, and
can cause some oddities during seeking. Defaults to 0.

reset_timestamps 1|0

Reset timestamps at the beginning of each segment, so that each segment will start with near-zero
timestamps. It is meant to ease the playback of the generated segments. May not work with some
combinations of muxers/codecs. It is set to 0 by default.

initial_offset offset

Specify timestamp offset to apply to the output packet timestamps. The argument must be a time
duration specification, and defaults to 0.

write_empty_segments 1|0

If enabled, write an empty segment if there are no packets during the period a segment would usually
span. Otherwise, the segment will be filled with the next packet written. Defaults to 0.

Make sure to require a closed GOP when encoding and to set the GOP size to fit your segment time
constraint.

21.25.2 Examples# TOC

Remux the content of file in.mkv to a list of segments out-000.nut, out-001.nut, etc., and
write the list of generated segments to out.list:

ffmpeg -i in.mkv -codec hevc -flags +cgop -g 60 -map 0 -f segment -segment_list out.list out%03d.nut

Segment input and set output format options for the output segments:

ffmpeg -i in.mkv -f segment -segment_time 10 -segment_format_options movflags=+faststart out%03d.mp4

Segment the input file according to the split points specified by the segment_times option:

ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 out%03d.nut

Use the ffmpeg force_key_frames option to force key frames in the input at the specified
location, together with the segment option segment_time_delta to account for possible
roundings operated when setting key frame times.

ffmpeg -i in.mkv -force_key_frames 1,2,3,5,8,13,21 -codec:v mpeg4 -codec:a pcm_s16le -map 0 \
-f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 -segment_time_delta 0.05 out%03d.nut

In order to force key frames on the input file, transcoding is required.

Segment the input file by splitting the input file according to the frame numbers sequence specified
with the segment_frames option:

ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.csv -segment_frames 100,200,300,500,800 out%03d.nut

Convert the in.mkv to TS segments using the libx264 and aac encoders:

ffmpeg -i in.mkv -map 0 -codec:v libx264 -codec:a aac -f ssegment -segment_list out.list out%03d.ts

Segment the input file, and create an M3U8 live playlist (can be used as live HLS source):

ffmpeg -re -i in.mkv -codec copy -map 0 -f segment -segment_list playlist.m3u8 \
-segment_list_flags +live -segment_time 10 out%03d.mkv

21.26 smoothstreaming# TOC

Smooth Streaming muxer generates a set of files (Manifest, chunks) suitable for serving with conventional
web server.

window_size

Specify the number of fragments kept in the manifest. Default 0 (keep all).

extra_window_size

Specify the number of fragments kept outside of the manifest before removing from disk. Default 5.

lookahead_count

Specify the number of lookahead fragments. Default 2.

min_frag_duration

Specify the minimum fragment duration (in microseconds). Default 5000000.

remove_at_exit

Specify whether to remove all fragments when finished. Default 0 (do not remove).

21.27 fifo# TOC

The fifo pseudo-muxer allows the separation of encoding and muxing by using first-in-first-out queue and
running the actual muxer in a separate thread. This is especially useful in combination with the tee muxer
and can be used to send data to several destinations with different reliability/writing speed/latency.

API users should be aware that callback functions (interrupt_callback, io_open and io_close) used within
its AVFormatContext must be thread-safe.

The behavior of the fifo muxer if the queue fills up or if the output fails is selectable,

output can be transparently restarted with configurable delay between retries based on real time or
time of the processed stream.
encoding can be blocked during temporary failure, or continue transparently dropping packets in case
fifo queue fills up.

fifo_format

Specify the format name. Useful if it cannot be guessed from the output name suffix.

queue_size

Specify size of the queue (number of packets). Default value is 60.

format_opts

Specify format options for the underlying muxer. Muxer options can be specified as a list of
key=value pairs separated by ’:’.

drop_pkts_on_overflow bool

If set to 1 (true), in case the fifo queue fills up, packets will be dropped rather than blocking the
encoder. This makes it possible to continue streaming without delaying the input, at the cost of
omitting part of the stream. By default this option is set to 0 (false), so in such cases the encoder will
be blocked until the muxer processes some of the packets and none of them is lost.

attempt_recovery bool

If failure occurs, attempt to recover the output. This is especially useful when used with network
output, since it makes it possible to restart streaming transparently. By default this option is set to 0
(false).

max_recovery_attempts

Sets maximum number of successive unsuccessful recovery attempts after which the output fails
permanently. By default this option is set to 0 (unlimited).

recovery_wait_time duration

Waiting time before the next recovery attempt after previous unsuccessful recovery attempt. Default
value is 5 seconds.

recovery_wait_streamtime bool

If set to 0 (false), the real time is used when waiting for the recovery attempt (i.e. the recovery will be
attempted after at least recovery_wait_time seconds). If set to 1 (true), the time of the processed
stream is taken into account instead (i.e. the recovery will be attempted after at least
recovery_wait_time seconds of the stream is omitted). By default, this option is set to 0 (false).

recover_any_error bool

If set to 1 (true), recovery will be attempted regardless of type of the error causing the failure. By
default this option is set to 0 (false) and in case of certain (usually permanent) errors the recovery is
not attempted even when attempt_recovery is set to 1.

restart_with_keyframe bool

Specify whether to wait for the keyframe after recovering from queue overflow or failure. This option
is set to 0 (false) by default.

21.27.1 Examples# TOC

Stream something to rtmp server, continue processing the stream at real-time rate even in case of
temporary failure (network outage) and attempt to recover streaming every second indefinitely.

ffmpeg -re -i ... -c:v libx264 -c:a aac -f fifo -fifo_format flv -map 0:v -map 0:a
 -drop_pkts_on_overflow 1 -attempt_recovery 1 -recovery_wait_time 1 rtmp://example.com/live/stream_name

21.28 tee# TOC

The tee muxer can be used to write the same data to several files or any other kind of muxer. It can be
used, for example, to both stream a video to the network and save it to disk at the same time.

It is different from specifying several outputs to the ffmpeg command-line tool because the audio and
video data will be encoded only once with the tee muxer; encoding can be a very expensive process. It is
not useful when using the libavformat API directly because it is then possible to feed the same packets to
several muxers directly.

use_fifo bool

If set to 1, slave outputs will be processed in separate thread using fifo muxer. This allows to
compensate for different speed/latency/reliability of outputs and setup transparent recovery. By
default this feature is turned off.

fifo_options

Options to pass to fifo pseudo-muxer instances. See fifo.

The slave outputs are specified in the file name given to the muxer, separated by ’|’. If any of the slave
name contains the ’|’ separator, leading or trailing spaces or any special character, it must be escaped (see
(ffmpeg-utils)the "Quoting and escaping" section in the ffmpeg-utils(1) manual).

Muxer options can be specified for each slave by prepending them as a list of key=value pairs separated by
’:’, between square brackets. If the options values contain a special character or the ’:’ separator, they must
be escaped; note that this is a second level escaping.

The following special options are also recognized:

f

Specify the format name. Useful if it cannot be guessed from the output name suffix.

bsfs[/spec]

Specify a list of bitstream filters to apply to the specified output.

use_fifo bool

This allows to override tee muxer use_fifo option for individual slave muxer.

fifo_options

This allows to override tee muxer fifo_options for individual slave muxer. See fifo.

It is possible to specify to which streams a given bitstream filter applies, by appending a stream
specifier to the option separated by /. spec must be a stream specifier (see Format stream specifiers).
If the stream specifier is not specified, the bitstream filters will be applied to all streams in the output.

Several bitstream filters can be specified, separated by ",".

select

Select the streams that should be mapped to the slave output, specified by a stream specifier. If not
specified, this defaults to all the input streams. You may use multiple stream specifiers separated by
commas (,) e.g.: a:0,v

onfail

Specify behaviour on output failure. This can be set to either abort (which is default) or ignore.
abort will cause whole process to fail in case of failure on this slave output. ignore will ignore
failure on this output, so other outputs will continue without being affected.

21.28.1 Examples# TOC

Encode something and both archive it in a WebM file and stream it as MPEG-TS over UDP (the
streams need to be explicitly mapped):

ffmpeg -i ... -c:v libx264 -c:a mp2 -f tee -map 0:v -map 0:a
 "archive-20121107.mkv|[f=mpegts]udp://10.0.1.255:1234/"

As above, but continue streaming even if output to local file fails (for example local drive fills up):

ffmpeg -i ... -c:v libx264 -c:a mp2 -f tee -map 0:v -map 0:a
 "[onfail=ignore]archive-20121107.mkv|[f=mpegts]udp://10.0.1.255:1234/"

Use ffmpeg to encode the input, and send the output to three different destinations. The
dump_extra bitstream filter is used to add extradata information to all the output video keyframes
packets, as requested by the MPEG-TS format. The select option is applied to out.aac in order to
make it contain only audio packets.

ffmpeg -i ... -map 0 -flags +global_header -c:v libx264 -c:a aac
 -f tee "[bsfs/v=dump_extra]out.ts|[movflags=+faststart]out.mp4|[select=a]out.aac"

As below, but select only stream a:1 for the audio output. Note that a second level escaping must be
performed, as ":" is a special character used to separate options.

ffmpeg -i ... -map 0 -flags +global_header -c:v libx264 -c:a aac
 -f tee "[bsfs/v=dump_extra]out.ts|[movflags=+faststart]out.mp4|[select=\’a:1\’]out.aac"

Note: some codecs may need different options depending on the output format; the auto-detection of this
can not work with the tee muxer. The main example is the global_header flag.

21.29 webm_dash_manifest# TOC

WebM DASH Manifest muxer.

This muxer implements the WebM DASH Manifest specification to generate the DASH manifest XML. It
also supports manifest generation for DASH live streams.

For more information see:

WebM DASH Specification:
https://sites.google.com/a/webmproject.org/wiki/adaptive-streaming/webm-dash-specification
ISO DASH Specification:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c065274_ISO_IEC_23009-1_2014.zip

21.29.1 Options# TOC

This muxer supports the following options:

https://sites.google.com/a/webmproject.org/wiki/adaptive-streaming/webm-dash-specification
http://standards.iso.org/ittf/PubliclyAvailableStandards/c065274_ISO_IEC_23009-1_2014.zip

adaptation_sets

This option has the following syntax: "id=x,streams=a,b,c id=y,streams=d,e" where x and y are the
unique identifiers of the adaptation sets and a,b,c,d and e are the indices of the corresponding audio
and video streams. Any number of adaptation sets can be added using this option.

live

Set this to 1 to create a live stream DASH Manifest. Default: 0.

chunk_start_index

Start index of the first chunk. This will go in the ‘startNumber’ attribute of the
‘SegmentTemplate’ element in the manifest. Default: 0.

chunk_duration_ms

Duration of each chunk in milliseconds. This will go in the ‘duration’ attribute of the
‘SegmentTemplate’ element in the manifest. Default: 1000.

utc_timing_url

URL of the page that will return the UTC timestamp in ISO format. This will go in the ‘value’
attribute of the ‘UTCTiming’ element in the manifest. Default: None.

time_shift_buffer_depth

Smallest time (in seconds) shifting buffer for which any Representation is guaranteed to be available.
This will go in the ‘timeShiftBufferDepth’ attribute of the ‘MPD’ element. Default: 60.

minimum_update_period

Minimum update period (in seconds) of the manifest. This will go in the
‘minimumUpdatePeriod’ attribute of the ‘MPD’ element. Default: 0.

21.29.2 Example# TOC

ffmpeg -f webm_dash_manifest -i video1.webm \
 -f webm_dash_manifest -i video2.webm \
 -f webm_dash_manifest -i audio1.webm \
 -f webm_dash_manifest -i audio2.webm \
 -map 0 -map 1 -map 2 -map 3 \
 -c copy \
 -f webm_dash_manifest \
 -adaptation_sets "id=0,streams=0,1 id=1,streams=2,3" \
 manifest.xml

21.30 webm_chunk# TOC

WebM Live Chunk Muxer.

This muxer writes out WebM headers and chunks as separate files which can be consumed by clients that
support WebM Live streams via DASH.

21.30.1 Options# TOC

This muxer supports the following options:

chunk_start_index

Index of the first chunk (defaults to 0).

header

Filename of the header where the initialization data will be written.

audio_chunk_duration

Duration of each audio chunk in milliseconds (defaults to 5000).

21.30.2 Example# TOC

ffmpeg -f v4l2 -i /dev/video0 \
 -f alsa -i hw:0 \
 -map 0:0 \
 -c:v libvpx-vp9 \
 -s 640x360 -keyint_min 30 -g 30 \
 -f webm_chunk \
 -header webm_live_video_360.hdr \
 -chunk_start_index 1 \
 webm_live_video_360_%d.chk \
 -map 1:0 \
 -c:a libvorbis \
 -b:a 128k \
 -f webm_chunk \
 -header webm_live_audio_128.hdr \
 -chunk_start_index 1 \
 -audio_chunk_duration 1000 \
 webm_live_audio_128_%d.chk

22 Metadata# TOC

FFmpeg is able to dump metadata from media files into a simple UTF-8-encoded INI-like text file and
then load it back using the metadata muxer/demuxer.

The file format is as follows:

1. A file consists of a header and a number of metadata tags divided into sections, each on its own line.
2. The header is a ‘;FFMETADATA’ string, followed by a version number (now 1).
3. Metadata tags are of the form ‘key=value’
4. Immediately after header follows global metadata
5. After global metadata there may be sections with per-stream/per-chapter metadata.
6. A section starts with the section name in uppercase (i.e. STREAM or CHAPTER) in brackets (‘[’,

‘]’) and ends with next section or end of file.
7. At the beginning of a chapter section there may be an optional timebase to be used for start/end

values. It must be in form ‘TIMEBASE=num/den’, where num and den are integers. If the timebase
is missing then start/end times are assumed to be in milliseconds.

Next a chapter section must contain chapter start and end times in form ‘START=num’, ‘END=num’,
where num is a positive integer.

8. Empty lines and lines starting with ‘;’ or ‘#’ are ignored.
9. Metadata keys or values containing special characters (‘=’, ‘;’, ‘#’, ‘\’ and a newline) must be

escaped with a backslash ‘\’.
10. Note that whitespace in metadata (e.g. ‘foo = bar’) is considered to be a part of the tag (in the

example above key is ‘foo ’, value is ‘ bar’).

A ffmetadata file might look like this:

;FFMETADATA1
title=bike\\shed
;this is a comment
artist=FFmpeg troll team

[CHAPTER]
TIMEBASE=1/1000
START=0
#chapter ends at 0:01:00
END=60000
title=chapter \#1
[STREAM]
title=multi\
line

By using the ffmetadata muxer and demuxer it is possible to extract metadata from an input file to an
ffmetadata file, and then transcode the file into an output file with the edited ffmetadata file.

Extracting an ffmetadata file with ffmpeg goes as follows:

ffmpeg -i INPUT -f ffmetadata FFMETADATAFILE

Reinserting edited metadata information from the FFMETADATAFILE file can be done as:

ffmpeg -i INPUT -i FFMETADATAFILE -map_metadata 1 -codec copy OUTPUT

23 Protocol Options# TOC

The libavformat library provides some generic global options, which can be set on all the protocols. In
addition each protocol may support so-called private options, which are specific for that component.

Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in
the AVFormatContext options or using the libavutil/opt.h API for programmatic use.

The list of supported options follows:

protocol_whitelist list (input)

Set a ","-separated list of allowed protocols. "ALL" matches all protocols. Protocols prefixed by "-"
are disabled. All protocols are allowed by default but protocols used by an another protocol (nested
protocols) are restricted to a per protocol subset.

24 Protocols# TOC

Protocols are configured elements in FFmpeg that enable access to resources that require specific
protocols.

When you configure your FFmpeg build, all the supported protocols are enabled by default. You can list
all available ones using the configure option "–list-protocols".

You can disable all the protocols using the configure option "–disable-protocols", and selectively enable a
protocol using the option "–enable-protocol=PROTOCOL", or you can disable a particular protocol using
the option "–disable-protocol=PROTOCOL".

The option "-protocols" of the ff* tools will display the list of supported protocols.

All protocols accept the following options:

rw_timeout

Maximum time to wait for (network) read/write operations to complete, in microseconds.

A description of the currently available protocols follows.

24.1 async# TOC

Asynchronous data filling wrapper for input stream.

Fill data in a background thread, to decouple I/O operation from demux thread.

async:URL
async:http://host/resource
async:cache:http://host/resource

24.2 bluray# TOC

Read BluRay playlist.

The accepted options are:

angle

BluRay angle

chapter

Start chapter (1...N)

playlist

Playlist to read (BDMV/PLAYLIST/?????.mpls)

Examples:

Read longest playlist from BluRay mounted to /mnt/bluray:

bluray:/mnt/bluray

Read angle 2 of playlist 4 from BluRay mounted to /mnt/bluray, start from chapter 2:

-playlist 4 -angle 2 -chapter 2 bluray:/mnt/bluray

24.3 cache# TOC

Caching wrapper for input stream.

Cache the input stream to temporary file. It brings seeking capability to live streams.

cache:URL

24.4 concat# TOC

Physical concatenation protocol.

Read and seek from many resources in sequence as if they were a unique resource.

A URL accepted by this protocol has the syntax:

concat:URL1|URL2|...|URLN

where URL1, URL2, ..., URLN are the urls of the resource to be concatenated, each one possibly
specifying a distinct protocol.

For example to read a sequence of files split1.mpeg, split2.mpeg, split3.mpeg with ffplay
use the command:

ffplay concat:split1.mpeg\|split2.mpeg\|split3.mpeg

Note that you may need to escape the character "|" which is special for many shells.

24.5 crypto# TOC

AES-encrypted stream reading protocol.

The accepted options are:

key

Set the AES decryption key binary block from given hexadecimal representation.

iv

Set the AES decryption initialization vector binary block from given hexadecimal representation.

Accepted URL formats:

crypto:URL
crypto+URL

24.6 data# TOC

Data in-line in the URI. See http://en.wikipedia.org/wiki/Data_URI_scheme.

For example, to convert a GIF file given inline with ffmpeg:

ffmpeg -i "" smiley.png

24.7 file# TOC

File access protocol.

Read from or write to a file.

A file URL can have the form:

file:filename

http://en.wikipedia.org/wiki/Data_URI_scheme

where filename is the path of the file to read.

An URL that does not have a protocol prefix will be assumed to be a file URL. Depending on the build, an
URL that looks like a Windows path with the drive letter at the beginning will also be assumed to be a file
URL (usually not the case in builds for unix-like systems).

For example to read from a file input.mpeg with ffmpeg use the command:

ffmpeg -i file:input.mpeg output.mpeg

This protocol accepts the following options:

truncate

Truncate existing files on write, if set to 1. A value of 0 prevents truncating. Default value is 1.

blocksize

Set I/O operation maximum block size, in bytes. Default value is INT_MAX, which results in not
limiting the requested block size. Setting this value reasonably low improves user termination request
reaction time, which is valuable for files on slow medium.

24.8 ftp# TOC

FTP (File Transfer Protocol).

Read from or write to remote resources using FTP protocol.

Following syntax is required.

ftp://[user[:password]@]server[:port]/path/to/remote/resource.mpeg

This protocol accepts the following options.

timeout

Set timeout in microseconds of socket I/O operations used by the underlying low level operation. By
default it is set to -1, which means that the timeout is not specified.

ftp-anonymous-password

Password used when login as anonymous user. Typically an e-mail address should be used.

ftp-write-seekable

Control seekability of connection during encoding. If set to 1 the resource is supposed to be seekable,
if set to 0 it is assumed not to be seekable. Default value is 0.

NOTE: Protocol can be used as output, but it is recommended to not do it, unless special care is taken
(tests, customized server configuration etc.). Different FTP servers behave in different way during seek
operation. ff* tools may produce incomplete content due to server limitations.

This protocol accepts the following options:

follow

If set to 1, the protocol will retry reading at the end of the file, allowing reading files that still are
being written. In order for this to terminate, you either need to use the rw_timeout option, or use the
interrupt callback (for API users).

24.9 gopher# TOC

Gopher protocol.

24.10 hls# TOC

Read Apple HTTP Live Streaming compliant segmented stream as a uniform one. The M3U8 playlists
describing the segments can be remote HTTP resources or local files, accessed using the standard file
protocol. The nested protocol is declared by specifying "+proto" after the hls URI scheme name, where
proto is either "file" or "http".

hls+http://host/path/to/remote/resource.m3u8
hls+file://path/to/local/resource.m3u8

Using this protocol is discouraged - the hls demuxer should work just as well (if not, please report the
issues) and is more complete. To use the hls demuxer instead, simply use the direct URLs to the m3u8
files.

24.11 http# TOC

HTTP (Hyper Text Transfer Protocol).

This protocol accepts the following options:

seekable

Control seekability of connection. If set to 1 the resource is supposed to be seekable, if set to 0 it is
assumed not to be seekable, if set to -1 it will try to autodetect if it is seekable. Default value is -1.

chunked_post

If set to 1 use chunked Transfer-Encoding for posts, default is 1.

content_type

Set a specific content type for the POST messages or for listen mode.

http_proxy

set HTTP proxy to tunnel through e.g. http://example.com:1234

headers

Set custom HTTP headers, can override built in default headers. The value must be a string encoding
the headers.

multiple_requests

Use persistent connections if set to 1, default is 0.

post_data

Set custom HTTP post data.

user_agent

Override the User-Agent header. If not specified the protocol will use a string describing the
libavformat build. ("Lavf/<version>")

user-agent

This is a deprecated option, you can use user_agent instead it.

timeout

Set timeout in microseconds of socket I/O operations used by the underlying low level operation. By
default it is set to -1, which means that the timeout is not specified.

reconnect_at_eof

If set then eof is treated like an error and causes reconnection, this is useful for live / endless streams.

reconnect_streamed

If set then even streamed/non seekable streams will be reconnected on errors.

reconnect_delay_max

Sets the maximum delay in seconds after which to give up reconnecting

mime_type

Export the MIME type.

icy

If set to 1 request ICY (SHOUTcast) metadata from the server. If the server supports this, the
metadata has to be retrieved by the application by reading the icy_metadata_headers and
icy_metadata_packet options. The default is 1.

icy_metadata_headers

If the server supports ICY metadata, this contains the ICY-specific HTTP reply headers, separated by
newline characters.

icy_metadata_packet

If the server supports ICY metadata, and icy was set to 1, this contains the last non-empty metadata
packet sent by the server. It should be polled in regular intervals by applications interested in
mid-stream metadata updates.

cookies

Set the cookies to be sent in future requests. The format of each cookie is the same as the value of a
Set-Cookie HTTP response field. Multiple cookies can be delimited by a newline character.

offset

Set initial byte offset.

end_offset

Try to limit the request to bytes preceding this offset.

method

When used as a client option it sets the HTTP method for the request.

When used as a server option it sets the HTTP method that is going to be expected from the client(s).
If the expected and the received HTTP method do not match the client will be given a Bad Request
response. When unset the HTTP method is not checked for now. This will be replaced by
autodetection in the future.

listen

If set to 1 enables experimental HTTP server. This can be used to send data when used as an output
option, or read data from a client with HTTP POST when used as an input option. If set to 2 enables
experimental multi-client HTTP server. This is not yet implemented in ffmpeg.c or ffserver.c and
thus must not be used as a command line option.

Server side (sending):
ffmpeg -i somefile.ogg -c copy -listen 1 -f ogg http://server:port

Client side (receiving):

ffmpeg -i http://server:port -c copy somefile.ogg

Client can also be done with wget:
wget http://server:port -O somefile.ogg

Server side (receiving):
ffmpeg -listen 1 -i http://server:port -c copy somefile.ogg

Client side (sending):
ffmpeg -i somefile.ogg -chunked_post 0 -c copy -f ogg http://server:port

Client can also be done with wget:
wget --post-file=somefile.ogg http://server:port

24.11.1 HTTP Cookies# TOC

Some HTTP requests will be denied unless cookie values are passed in with the request. The cookies
option allows these cookies to be specified. At the very least, each cookie must specify a value along with
a path and domain. HTTP requests that match both the domain and path will automatically include the
cookie value in the HTTP Cookie header field. Multiple cookies can be delimited by a newline.

The required syntax to play a stream specifying a cookie is:

ffplay -cookies "nlqptid=nltid=tsn; path=/; domain=somedomain.com;" http://somedomain.com/somestream.m3u8

24.12 Icecast# TOC

Icecast protocol (stream to Icecast servers)

This protocol accepts the following options:

ice_genre

Set the stream genre.

ice_name

Set the stream name.

ice_description

Set the stream description.

ice_url

Set the stream website URL.

ice_public

Set if the stream should be public. The default is 0 (not public).

user_agent

Override the User-Agent header. If not specified a string of the form "Lavf/<version>" will be used.

password

Set the Icecast mountpoint password.

content_type

Set the stream content type. This must be set if it is different from audio/mpeg.

legacy_icecast

This enables support for Icecast versions < 2.4.0, that do not support the HTTP PUT method but the
SOURCE method.

icecast://[username[:password]@]server:port/mountpoint

24.13 mmst# TOC

MMS (Microsoft Media Server) protocol over TCP.

24.14 mmsh# TOC

MMS (Microsoft Media Server) protocol over HTTP.

The required syntax is:

mmsh://server[:port][/app][/playpath]

24.15 md5# TOC

MD5 output protocol.

Computes the MD5 hash of the data to be written, and on close writes this to the designated output or
stdout if none is specified. It can be used to test muxers without writing an actual file.

Some examples follow.

Write the MD5 hash of the encoded AVI file to the file output.avi.md5.
ffmpeg -i input.flv -f avi -y md5:output.avi.md5

Write the MD5 hash of the encoded AVI file to stdout.
ffmpeg -i input.flv -f avi -y md5:

Note that some formats (typically MOV) require the output protocol to be seekable, so they will fail with
the MD5 output protocol.

24.16 pipe# TOC

UNIX pipe access protocol.

Read and write from UNIX pipes.

The accepted syntax is:

pipe:[number]

number is the number corresponding to the file descriptor of the pipe (e.g. 0 for stdin, 1 for stdout, 2 for
stderr). If number is not specified, by default the stdout file descriptor will be used for writing, stdin for
reading.

For example to read from stdin with ffmpeg:

cat test.wav | ffmpeg -i pipe:0
...this is the same as...
cat test.wav | ffmpeg -i pipe:

For writing to stdout with ffmpeg:

ffmpeg -i test.wav -f avi pipe:1 | cat > test.avi
...this is the same as...
ffmpeg -i test.wav -f avi pipe: | cat > test.avi

This protocol accepts the following options:

blocksize

Set I/O operation maximum block size, in bytes. Default value is INT_MAX, which results in not
limiting the requested block size. Setting this value reasonably low improves user termination request
reaction time, which is valuable if data transmission is slow.

Note that some formats (typically MOV), require the output protocol to be seekable, so they will fail with
the pipe output protocol.

24.17 prompeg# TOC

Pro-MPEG Code of Practice #3 Release 2 FEC protocol.

The Pro-MPEG CoP#3 FEC is a 2D parity-check forward error correction mechanism for MPEG-2
Transport Streams sent over RTP.

This protocol must be used in conjunction with the rtp_mpegts muxer and the rtp protocol.

The required syntax is:

-f rtp_mpegts -fec prompeg=option=val... rtp://hostname:port

The destination UDP ports are port + 2 for the column FEC stream and port + 4 for the row FEC
stream.

This protocol accepts the following options:

l=n

The number of columns (4-20, LxD <= 100)

d=n

The number of rows (4-20, LxD <= 100)

Example usage:

-f rtp_mpegts -fec prompeg=l=8:d=4 rtp://hostname:port

24.18 rtmp# TOC

Real-Time Messaging Protocol.

The Real-Time Messaging Protocol (RTMP) is used for streaming multimedia content across a TCP/IP
network.

The required syntax is:

rtmp://[username:password@]server[:port][/app][/instance][/playpath]

The accepted parameters are:

username

An optional username (mostly for publishing).

password

An optional password (mostly for publishing).

server

The address of the RTMP server.

port

The number of the TCP port to use (by default is 1935).

app

It is the name of the application to access. It usually corresponds to the path where the application is
installed on the RTMP server (e.g. /ondemand/, /flash/live/, etc.). You can override the
value parsed from the URI through the rtmp_app option, too.

playpath

It is the path or name of the resource to play with reference to the application specified in app, may
be prefixed by "mp4:". You can override the value parsed from the URI through the
rtmp_playpath option, too.

listen

Act as a server, listening for an incoming connection.

timeout

Maximum time to wait for the incoming connection. Implies listen.

Additionally, the following parameters can be set via command line options (or in code via AVOptions):

rtmp_app

Name of application to connect on the RTMP server. This option overrides the parameter specified in
the URI.

rtmp_buffer

Set the client buffer time in milliseconds. The default is 3000.

rtmp_conn

Extra arbitrary AMF connection parameters, parsed from a string, e.g. like B:1 S:authMe O:1
NN:code:1.23 NS:flag:ok O:0. Each value is prefixed by a single character denoting the
type, B for Boolean, N for number, S for string, O for object, or Z for null, followed by a colon. For
Booleans the data must be either 0 or 1 for FALSE or TRUE, respectively. Likewise for Objects the
data must be 0 or 1 to end or begin an object, respectively. Data items in subobjects may be named,
by prefixing the type with ’N’ and specifying the name before the value (i.e. NB:myFlag:1). This
option may be used multiple times to construct arbitrary AMF sequences.

rtmp_flashver

Version of the Flash plugin used to run the SWF player. The default is LNX 9,0,124,2. (When
publishing, the default is FMLE/3.0 (compatible; <libavformat version>).)

rtmp_flush_interval

Number of packets flushed in the same request (RTMPT only). The default is 10.

rtmp_live

Specify that the media is a live stream. No resuming or seeking in live streams is possible. The
default value is any, which means the subscriber first tries to play the live stream specified in the
playpath. If a live stream of that name is not found, it plays the recorded stream. The other possible
values are live and recorded.

rtmp_pageurl

URL of the web page in which the media was embedded. By default no value will be sent.

rtmp_playpath

Stream identifier to play or to publish. This option overrides the parameter specified in the URI.

rtmp_subscribe

Name of live stream to subscribe to. By default no value will be sent. It is only sent if the option is
specified or if rtmp_live is set to live.

rtmp_swfhash

SHA256 hash of the decompressed SWF file (32 bytes).

rtmp_swfsize

Size of the decompressed SWF file, required for SWFVerification.

rtmp_swfurl

URL of the SWF player for the media. By default no value will be sent.

rtmp_swfverify

URL to player swf file, compute hash/size automatically.

rtmp_tcurl

URL of the target stream. Defaults to proto://host[:port]/app.

For example to read with ffplay a multimedia resource named "sample" from the application "vod"
from an RTMP server "myserver":

ffplay rtmp://myserver/vod/sample

To publish to a password protected server, passing the playpath and app names separately:

ffmpeg -re -i <input> -f flv -rtmp_playpath some/long/path -rtmp_app long/app/name rtmp://username:password@myserver/

24.19 rtmpe# TOC

Encrypted Real-Time Messaging Protocol.

The Encrypted Real-Time Messaging Protocol (RTMPE) is used for streaming multimedia content within
standard cryptographic primitives, consisting of Diffie-Hellman key exchange and HMACSHA256,
generating a pair of RC4 keys.

24.20 rtmps# TOC

Real-Time Messaging Protocol over a secure SSL connection.

The Real-Time Messaging Protocol (RTMPS) is used for streaming multimedia content across an
encrypted connection.

24.21 rtmpt# TOC

Real-Time Messaging Protocol tunneled through HTTP.

The Real-Time Messaging Protocol tunneled through HTTP (RTMPT) is used for streaming multimedia
content within HTTP requests to traverse firewalls.

24.22 rtmpte# TOC

Encrypted Real-Time Messaging Protocol tunneled through HTTP.

The Encrypted Real-Time Messaging Protocol tunneled through HTTP (RTMPTE) is used for streaming
multimedia content within HTTP requests to traverse firewalls.

24.23 rtmpts# TOC

Real-Time Messaging Protocol tunneled through HTTPS.

The Real-Time Messaging Protocol tunneled through HTTPS (RTMPTS) is used for streaming
multimedia content within HTTPS requests to traverse firewalls.

24.24 libsmbclient# TOC

libsmbclient permits one to manipulate CIFS/SMB network resources.

Following syntax is required.

smb://[[domain:]user[:password@]]server[/share[/path[/file]]]

This protocol accepts the following options.

timeout

Set timeout in milliseconds of socket I/O operations used by the underlying low level operation. By
default it is set to -1, which means that the timeout is not specified.

truncate

Truncate existing files on write, if set to 1. A value of 0 prevents truncating. Default value is 1.

workgroup

Set the workgroup used for making connections. By default workgroup is not specified.

For more information see: http://www.samba.org/.

24.25 libssh# TOC

Secure File Transfer Protocol via libssh

Read from or write to remote resources using SFTP protocol.

Following syntax is required.

sftp://[user[:password]@]server[:port]/path/to/remote/resource.mpeg

This protocol accepts the following options.

timeout

Set timeout of socket I/O operations used by the underlying low level operation. By default it is set to
-1, which means that the timeout is not specified.

truncate

Truncate existing files on write, if set to 1. A value of 0 prevents truncating. Default value is 1.

private_key

Specify the path of the file containing private key to use during authorization. By default libssh
searches for keys in the ~/.ssh/ directory.

Example: Play a file stored on remote server.

ffplay sftp://user:password@server_address:22/home/user/resource.mpeg

http://www.samba.org/

24.26 librtmp rtmp, rtmpe, rtmps, rtmpt, rtmpte# TOC

Real-Time Messaging Protocol and its variants supported through librtmp.

Requires the presence of the librtmp headers and library during configuration. You need to explicitly
configure the build with "–enable-librtmp". If enabled this will replace the native RTMP protocol.

This protocol provides most client functions and a few server functions needed to support RTMP, RTMP
tunneled in HTTP (RTMPT), encrypted RTMP (RTMPE), RTMP over SSL/TLS (RTMPS) and tunneled
variants of these encrypted types (RTMPTE, RTMPTS).

The required syntax is:

rtmp_proto://server[:port][/app][/playpath] options

where rtmp_proto is one of the strings "rtmp", "rtmpt", "rtmpe", "rtmps", "rtmpte", "rtmpts" corresponding
to each RTMP variant, and server, port, app and playpath have the same meaning as specified for the
RTMP native protocol. options contains a list of space-separated options of the form key=val.

See the librtmp manual page (man 3 librtmp) for more information.

For example, to stream a file in real-time to an RTMP server using ffmpeg:

ffmpeg -re -i myfile -f flv rtmp://myserver/live/mystream

To play the same stream using ffplay:

ffplay "rtmp://myserver/live/mystream live=1"

24.27 rtp# TOC

Real-time Transport Protocol.

The required syntax for an RTP URL is: rtp://hostname[:port][?option=val...]

port specifies the RTP port to use.

The following URL options are supported:

ttl=n

Set the TTL (Time-To-Live) value (for multicast only).

rtcpport=n

Set the remote RTCP port to n.

localrtpport=n

Set the local RTP port to n.

localrtcpport=n’

Set the local RTCP port to n.

pkt_size=n

Set max packet size (in bytes) to n.

connect=0|1

Do a connect() on the UDP socket (if set to 1) or not (if set to 0).

sources=ip[,ip]

List allowed source IP addresses.

block=ip[,ip]

List disallowed (blocked) source IP addresses.

write_to_source=0|1

Send packets to the source address of the latest received packet (if set to 1) or to a default remote
address (if set to 0).

localport=n

Set the local RTP port to n.

This is a deprecated option. Instead, localrtpport should be used.

Important notes:

1. If rtcpport is not set the RTCP port will be set to the RTP port value plus 1.
2. If localrtpport (the local RTP port) is not set any available port will be used for the local RTP

and RTCP ports.
3. If localrtcpport (the local RTCP port) is not set it will be set to the local RTP port value plus 1.

24.28 rtsp# TOC

Real-Time Streaming Protocol.

RTSP is not technically a protocol handler in libavformat, it is a demuxer and muxer. The demuxer
supports both normal RTSP (with data transferred over RTP; this is used by e.g. Apple and Microsoft) and
Real-RTSP (with data transferred over RDT).

The muxer can be used to send a stream using RTSP ANNOUNCE to a server supporting it (currently
Darwin Streaming Server and Mischa Spiegelmock’s RTSP server).

The required syntax for a RTSP url is:

rtsp://hostname[:port]/path

Options can be set on the ffmpeg/ffplay command line, or set in code via AVOptions or in
avformat_open_input.

The following options are supported.

initial_pause

Do not start playing the stream immediately if set to 1. Default value is 0.

rtsp_transport

Set RTSP transport protocols.

It accepts the following values:

‘udp’

Use UDP as lower transport protocol.

‘tcp’

Use TCP (interleaving within the RTSP control channel) as lower transport protocol.

‘udp_multicast’

Use UDP multicast as lower transport protocol.

‘http’

Use HTTP tunneling as lower transport protocol, which is useful for passing proxies.

Multiple lower transport protocols may be specified, in that case they are tried one at a time (if the
setup of one fails, the next one is tried). For the muxer, only the ‘tcp’ and ‘udp’ options are
supported.

rtsp_flags

Set RTSP flags.

The following values are accepted:

https://github.com/revmischa/rtsp-server

‘filter_src’

Accept packets only from negotiated peer address and port.

‘listen’

Act as a server, listening for an incoming connection.

‘prefer_tcp’

Try TCP for RTP transport first, if TCP is available as RTSP RTP transport.

Default value is ‘none’.

allowed_media_types

Set media types to accept from the server.

The following flags are accepted:

‘video’
‘audio’
‘data’

By default it accepts all media types.

min_port

Set minimum local UDP port. Default value is 5000.

max_port

Set maximum local UDP port. Default value is 65000.

timeout

Set maximum timeout (in seconds) to wait for incoming connections.

A value of -1 means infinite (default). This option implies the rtsp_flags set to ‘listen’.

reorder_queue_size

Set number of packets to buffer for handling of reordered packets.

stimeout

Set socket TCP I/O timeout in microseconds.

user-agent

Override User-Agent header. If not specified, it defaults to the libavformat identifier string.

When receiving data over UDP, the demuxer tries to reorder received packets (since they may arrive out
of order, or packets may get lost totally). This can be disabled by setting the maximum demuxing delay to
zero (via the max_delay field of AVFormatContext).

When watching multi-bitrate Real-RTSP streams with ffplay, the streams to display can be chosen with
-vst n and -ast n for video and audio respectively, and can be switched on the fly by pressing v and a.

24.28.1 Examples# TOC

The following examples all make use of the ffplay and ffmpeg tools.

Watch a stream over UDP, with a max reordering delay of 0.5 seconds:

ffplay -max_delay 500000 -rtsp_transport udp rtsp://server/video.mp4

Watch a stream tunneled over HTTP:

ffplay -rtsp_transport http rtsp://server/video.mp4

Send a stream in realtime to a RTSP server, for others to watch:

ffmpeg -re -i input -f rtsp -muxdelay 0.1 rtsp://server/live.sdp

Receive a stream in realtime:

ffmpeg -rtsp_flags listen -i rtsp://ownaddress/live.sdp output

24.29 sap# TOC

Session Announcement Protocol (RFC 2974). This is not technically a protocol handler in libavformat, it
is a muxer and demuxer. It is used for signalling of RTP streams, by announcing the SDP for the streams
regularly on a separate port.

24.29.1 Muxer# TOC

The syntax for a SAP url given to the muxer is:

sap://destination[:port][?options]

The RTP packets are sent to destination on port port, or to port 5004 if no port is specified. options is a
&-separated list. The following options are supported:

announce_addr=address

Specify the destination IP address for sending the announcements to. If omitted, the announcements
are sent to the commonly used SAP announcement multicast address 224.2.127.254 (sap.mcast.net), or
ff0e::2:7ffe if destination is an IPv6 address.

announce_port=port

Specify the port to send the announcements on, defaults to 9875 if not specified.

ttl=ttl

Specify the time to live value for the announcements and RTP packets, defaults to 255.

same_port=0|1

If set to 1, send all RTP streams on the same port pair. If zero (the default), all streams are sent on
unique ports, with each stream on a port 2 numbers higher than the previous. VLC/Live555 requires
this to be set to 1, to be able to receive the stream. The RTP stack in libavformat for receiving
requires all streams to be sent on unique ports.

Example command lines follow.

To broadcast a stream on the local subnet, for watching in VLC:

ffmpeg -re -i input -f sap sap://224.0.0.255?same_port=1

Similarly, for watching in ffplay:

ffmpeg -re -i input -f sap sap://224.0.0.255

And for watching in ffplay, over IPv6:

ffmpeg -re -i input -f sap sap://[ff0e::1:2:3:4]

24.29.2 Demuxer# TOC

The syntax for a SAP url given to the demuxer is:

sap://[address][:port]

address is the multicast address to listen for announcements on, if omitted, the default 224.2.127.254
(sap.mcast.net) is used. port is the port that is listened on, 9875 if omitted.

The demuxers listens for announcements on the given address and port. Once an announcement is
received, it tries to receive that particular stream.

Example command lines follow.

To play back the first stream announced on the normal SAP multicast address:

ffplay sap://

To play back the first stream announced on one the default IPv6 SAP multicast address:

ffplay sap://[ff0e::2:7ffe]

24.30 sctp# TOC

Stream Control Transmission Protocol.

The accepted URL syntax is:

sctp://host:port[?options]

The protocol accepts the following options:

listen

If set to any value, listen for an incoming connection. Outgoing connection is done by default.

max_streams

Set the maximum number of streams. By default no limit is set.

24.31 srtp# TOC

Secure Real-time Transport Protocol.

The accepted options are:

srtp_in_suite
srtp_out_suite

Select input and output encoding suites.

Supported values:

‘AES_CM_128_HMAC_SHA1_80’
‘SRTP_AES128_CM_HMAC_SHA1_80’
‘AES_CM_128_HMAC_SHA1_32’
‘SRTP_AES128_CM_HMAC_SHA1_32’

srtp_in_params
srtp_out_params

Set input and output encoding parameters, which are expressed by a base64-encoded representation
of a binary block. The first 16 bytes of this binary block are used as master key, the following 14
bytes are used as master salt.

24.32 subfile# TOC

Virtually extract a segment of a file or another stream. The underlying stream must be seekable.

Accepted options:

start

Start offset of the extracted segment, in bytes.

end

End offset of the extracted segment, in bytes. If set to 0, extract till end of file.

Examples:

Extract a chapter from a DVD VOB file (start and end sectors obtained externally and multiplied by
2048):

subfile,,start,153391104,end,268142592,,:/media/dvd/VIDEO_TS/VTS_08_1.VOB

Play an AVI file directly from a TAR archive:

subfile,,start,183241728,end,366490624,,:archive.tar

Play a MPEG-TS file from start offset till end:

subfile,,start,32815239,end,0,,:video.ts

24.33 tee# TOC

Writes the output to multiple protocols. The individual outputs are separated by |

tee:file://path/to/local/this.avi|file://path/to/local/that.avi

24.34 tcp# TOC

Transmission Control Protocol.

The required syntax for a TCP url is:

tcp://hostname:port[?options]

options contains a list of &-separated options of the form key=val.

The list of supported options follows.

listen=1|0

Listen for an incoming connection. Default value is 0.

timeout=microseconds

Set raise error timeout, expressed in microseconds.

This option is only relevant in read mode: if no data arrived in more than this time interval, raise
error.

listen_timeout=milliseconds

Set listen timeout, expressed in milliseconds.

recv_buffer_size=bytes

Set receive buffer size, expressed bytes.

send_buffer_size=bytes

Set send buffer size, expressed bytes.

tcp_nodelay=1|0

Set TCP_NODELAY to disable Nagle’s algorithm. Default value is 0.

The following example shows how to setup a listening TCP connection with ffmpeg, which is then
accessed with ffplay:

ffmpeg -i input -f format tcp://hostname:port?listen
ffplay tcp://hostname:port

24.35 tls# TOC

Transport Layer Security (TLS) / Secure Sockets Layer (SSL)

The required syntax for a TLS/SSL url is:

tls://hostname:port[?options]

The following parameters can be set via command line options (or in code via AVOptions):

ca_file, cafile=filename

A file containing certificate authority (CA) root certificates to treat as trusted. If the linked TLS
library contains a default this might not need to be specified for verification to work, but not all
libraries and setups have defaults built in. The file must be in OpenSSL PEM format.

tls_verify=1|0

If enabled, try to verify the peer that we are communicating with. Note, if using OpenSSL, this
currently only makes sure that the peer certificate is signed by one of the root certificates in the CA
database, but it does not validate that the certificate actually matches the host name we are trying to
connect to. (With GnuTLS, the host name is validated as well.)

This is disabled by default since it requires a CA database to be provided by the caller in many cases.

cert_file, cert=filename

A file containing a certificate to use in the handshake with the peer. (When operating as server, in
listen mode, this is more often required by the peer, while client certificates only are mandated in
certain setups.)

key_file, key=filename

A file containing the private key for the certificate.

listen=1|0

If enabled, listen for connections on the provided port, and assume the server role in the handshake
instead of the client role.

Example command lines:

To create a TLS/SSL server that serves an input stream.

ffmpeg -i input -f format tls://hostname:port?listen&cert=server.crt&key=server.key

To play back a stream from the TLS/SSL server using ffplay:

ffplay tls://hostname:port

24.36 udp# TOC

User Datagram Protocol.

The required syntax for an UDP URL is:

udp://hostname:port[?options]

options contains a list of &-separated options of the form key=val.

In case threading is enabled on the system, a circular buffer is used to store the incoming data, which
allows one to reduce loss of data due to UDP socket buffer overruns. The fifo_size and overrun_nonfatal

options are related to this buffer.

The list of supported options follows.

buffer_size=size

Set the UDP maximum socket buffer size in bytes. This is used to set either the receive or send buffer
size, depending on what the socket is used for. Default is 64KB. See also fifo_size.

bitrate=bitrate

If set to nonzero, the output will have the specified constant bitrate if the input has enough packets to
sustain it.

burst_bits=bits

When using bitrate this specifies the maximum number of bits in packet bursts.

localport=port

Override the local UDP port to bind with.

localaddr=addr

Choose the local IP address. This is useful e.g. if sending multicast and the host has multiple
interfaces, where the user can choose which interface to send on by specifying the IP address of that
interface.

pkt_size=size

Set the size in bytes of UDP packets.

reuse=1|0

Explicitly allow or disallow reusing UDP sockets.

ttl=ttl

Set the time to live value (for multicast only).

connect=1|0

Initialize the UDP socket with connect(). In this case, the destination address can’t be changed
with ff_udp_set_remote_url later. If the destination address isn’t known at the start, this option can be
specified in ff_udp_set_remote_url, too. This allows finding out the source address for the packets
with getsockname, and makes writes return with AVERROR(ECONNREFUSED) if "destination
unreachable" is received. For receiving, this gives the benefit of only receiving packets from the
specified peer address/port.

sources=address[,address]

Only receive packets sent to the multicast group from one of the specified sender IP addresses.

block=address[,address]

Ignore packets sent to the multicast group from the specified sender IP addresses.

fifo_size=units

Set the UDP receiving circular buffer size, expressed as a number of packets with size of 188 bytes.
If not specified defaults to 7*4096.

overrun_nonfatal=1|0

Survive in case of UDP receiving circular buffer overrun. Default value is 0.

timeout=microseconds

Set raise error timeout, expressed in microseconds.

This option is only relevant in read mode: if no data arrived in more than this time interval, raise
error.

broadcast=1|0

Explicitly allow or disallow UDP broadcasting.

Note that broadcasting may not work properly on networks having a broadcast storm protection.

24.36.1 Examples# TOC

Use ffmpeg to stream over UDP to a remote endpoint:

ffmpeg -i input -f format udp://hostname:port

Use ffmpeg to stream in mpegts format over UDP using 188 sized UDP packets, using a large input
buffer:

ffmpeg -i input -f mpegts udp://hostname:port?pkt_size=188&buffer_size=65535

Use ffmpeg to receive over UDP from a remote endpoint:

ffmpeg -i udp://[multicast-address]:port ...

24.37 unix# TOC

Unix local socket

The required syntax for a Unix socket URL is:

unix://filepath

The following parameters can be set via command line options (or in code via AVOptions):

timeout

Timeout in ms.

listen

Create the Unix socket in listening mode.

25 Device Options# TOC

The libavdevice library provides the same interface as libavformat. Namely, an input device is considered
like a demuxer, and an output device like a muxer, and the interface and generic device options are the
same provided by libavformat (see the ffmpeg-formats manual).

In addition each input or output device may support so-called private options, which are specific for that
component.

Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in
the device AVFormatContext options or using the libavutil/opt.h API for programmatic use.

26 Input Devices# TOC

Input devices are configured elements in FFmpeg which enable accessing the data coming from a
multimedia device attached to your system.

When you configure your FFmpeg build, all the supported input devices are enabled by default. You can
list all available ones using the configure option "–list-indevs".

You can disable all the input devices using the configure option "–disable-indevs", and selectively enable
an input device using the option "–enable-indev=INDEV", or you can disable a particular input device
using the option "–disable-indev=INDEV".

The option "-devices" of the ff* tools will display the list of supported input devices.

A description of the currently available input devices follows.

26.1 alsa# TOC

ALSA (Advanced Linux Sound Architecture) input device.

To enable this input device during configuration you need libasound installed on your system.

This device allows capturing from an ALSA device. The name of the device to capture has to be an ALSA
card identifier.

An ALSA identifier has the syntax:

hw:CARD[,DEV[,SUBDEV]]

where the DEV and SUBDEV components are optional.

The three arguments (in order: CARD,DEV,SUBDEV) specify card number or identifier, device number
and subdevice number (-1 means any).

To see the list of cards currently recognized by your system check the files /proc/asound/cards and
/proc/asound/devices.

For example to capture with ffmpeg from an ALSA device with card id 0, you may run the command:

ffmpeg -f alsa -i hw:0 alsaout.wav

For more information see: http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html

26.1.1 Options# TOC

sample_rate

Set the sample rate in Hz. Default is 48000.

channels

Set the number of channels. Default is 2.

26.2 avfoundation# TOC

AVFoundation input device.

AVFoundation is the currently recommended framework by Apple for streamgrabbing on OSX >= 10.7 as
well as on iOS.

The input filename has to be given in the following syntax:

-i "[[VIDEO]:[AUDIO]]"

The first entry selects the video input while the latter selects the audio input. The stream has to be
specified by the device name or the device index as shown by the device list. Alternatively, the video
and/or audio input device can be chosen by index using the -video_device_index <INDEX>
and/or -audio_device_index <INDEX> , overriding any device name or index given in the input
filename.

http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html

All available devices can be enumerated by using -list_devices true, listing all device names and
corresponding indices.

There are two device name aliases:

default

Select the AVFoundation default device of the corresponding type.

none

Do not record the corresponding media type. This is equivalent to specifying an empty device name
or index.

26.2.1 Options# TOC

AVFoundation supports the following options:

-list_devices <TRUE|FALSE>

If set to true, a list of all available input devices is given showing all device names and indices.

-video_device_index <INDEX>

Specify the video device by its index. Overrides anything given in the input filename.

-audio_device_index <INDEX>

Specify the audio device by its index. Overrides anything given in the input filename.

-pixel_format <FORMAT>

Request the video device to use a specific pixel format. If the specified format is not supported, a list
of available formats is given and the first one in this list is used instead. Available pixel formats are:
monob, rgb555be, rgb555le, rgb565be, rgb565le, rgb24, bgr24, 0rgb,
bgr0, 0bgr, rgb0, bgr48be, uyvy422, yuva444p, yuva444p16le, yuv444p,
yuv422p16, yuv422p10, yuv444p10, yuv420p, nv12, yuyv422, gray

-framerate

Set the grabbing frame rate. Default is ntsc, corresponding to a frame rate of 30000/1001.

-video_size

Set the video frame size.

-capture_cursor

Capture the mouse pointer. Default is 0.

-capture_mouse_clicks

Capture the screen mouse clicks. Default is 0.

26.2.2 Examples# TOC

Print the list of AVFoundation supported devices and exit:

$ ffmpeg -f avfoundation -list_devices true -i ""

Record video from video device 0 and audio from audio device 0 into out.avi:

$ ffmpeg -f avfoundation -i "0:0" out.avi

Record video from video device 2 and audio from audio device 1 into out.avi:

$ ffmpeg -f avfoundation -video_device_index 2 -i ":1" out.avi

Record video from the system default video device using the pixel format bgr0 and do not record any
audio into out.avi:

$ ffmpeg -f avfoundation -pixel_format bgr0 -i "default:none" out.avi

26.3 bktr# TOC

BSD video input device.

26.3.1 Options# TOC

framerate

Set the frame rate.

video_size

Set the video frame size. Default is vga.

standard

Available values are:

‘pal’
‘ntsc’
‘secam’
‘paln’
‘palm’
‘ntscj’

26.4 decklink# TOC

The decklink input device provides capture capabilities for Blackmagic DeckLink devices.

To enable this input device, you need the Blackmagic DeckLink SDK and you need to configure with the
appropriate --extra-cflags and --extra-ldflags. On Windows, you need to run the IDL files
through widl.

DeckLink is very picky about the formats it supports. Pixel format of the input can be set with
raw_format. Framerate and video size must be determined for your device with -list_formats 1.
Audio sample rate is always 48 kHz and the number of channels can be 2, 8 or 16. Note that all audio
channels are bundled in one single audio track.

26.4.1 Options# TOC

list_devices

If set to true, print a list of devices and exit. Defaults to false.

list_formats

If set to true, print a list of supported formats and exit. Defaults to false.

format_code <FourCC>

This sets the input video format to the format given by the FourCC. To see the supported values of
your device(s) use list_formats. Note that there is a FourCC ’pal ’ that can also be used as
pal (3 letters). Default behavior is autodetection of the input video format, if the hardware supports
it.

bm_v210

This is a deprecated option, you can use raw_format instead. If set to ‘1’, video is captured in 10
bit v210 instead of uyvy422. Not all Blackmagic devices support this option.

raw_format

Set the pixel format of the captured video. Available values are:

‘uyvy422’
‘yuv422p10’
‘argb’
‘bgra’
‘rgb10’

teletext_lines

If set to nonzero, an additional teletext stream will be captured from the vertical ancillary data. Both
SD PAL (576i) and HD (1080i or 1080p) sources are supported. In case of HD sources, OP47 packets are
decoded.

This option is a bitmask of the SD PAL VBI lines captured, specifically lines 6 to 22, and lines 318 to
335. Line 6 is the LSB in the mask. Selected lines which do not contain teletext information will be
ignored. You can use the special all constant to select all possible lines, or standard to skip lines
6, 318 and 319, which are not compatible with all receivers.

For SD sources, ffmpeg needs to be compiled with --enable-libzvbi. For HD sources, on older
(pre-4K) DeckLink card models you have to capture in 10 bit mode.

channels

Defines number of audio channels to capture. Must be ‘2’, ‘8’ or ‘16’. Defaults to ‘2’.

duplex_mode

Sets the decklink device duplex mode. Must be ‘unset’, ‘half’ or ‘full’. Defaults to ‘unset’.

video_input

Sets the video input source. Must be ‘unset’, ‘sdi’, ‘hdmi’, ‘optical_sdi’, ‘component’,
‘composite’ or ‘s_video’. Defaults to ‘unset’.

audio_input

Sets the audio input source. Must be ‘unset’, ‘embedded’, ‘aes_ebu’, ‘analog’,
‘analog_xlr’, ‘analog_rca’ or ‘microphone’. Defaults to ‘unset’.

video_pts

Sets the video packet timestamp source. Must be ‘video’, ‘audio’, ‘reference’ or
‘wallclock’. Defaults to ‘video’.

audio_pts

Sets the audio packet timestamp source. Must be ‘video’, ‘audio’, ‘reference’ or
‘wallclock’. Defaults to ‘audio’.

draw_bars

If set to ‘true’, color bars are drawn in the event of a signal loss. Defaults to ‘true’.

queue_size

Sets maximum input buffer size in bytes. If the buffering reaches this value, incoming frames will be
dropped. Defaults to ‘1073741824’.

audio_depth

Sets the audio sample bit depth. Must be ‘16’ or ‘32’. Defaults to ‘16’.

26.4.2 Examples# TOC

List input devices:

ffmpeg -f decklink -list_devices 1 -i dummy

List supported formats:

ffmpeg -f decklink -list_formats 1 -i ’Intensity Pro’

Capture video clip at 1080i50:

ffmpeg -format_code Hi50 -f decklink -i ’Intensity Pro’ -c:a copy -c:v copy output.avi

Capture video clip at 1080i50 10 bit:

ffmpeg -bm_v210 1 -format_code Hi50 -f decklink -i ’UltraStudio Mini Recorder’ -c:a copy -c:v copy output.avi

Capture video clip at 1080i50 with 16 audio channels:

ffmpeg -channels 16 -format_code Hi50 -f decklink -i ’UltraStudio Mini Recorder’ -c:a copy -c:v copy output.avi

26.5 kmsgrab# TOC

KMS video input device.

Captures the KMS scanout framebuffer associated with a specified CRTC or plane as a DRM object that
can be passed to other hardware functions.

Requires either DRM master or CAP_SYS_ADMIN to run.

If you don’t understand what all of that means, you probably don’t want this. Look at x11grab instead.

26.5.1 Options# TOC

device

DRM device to capture on. Defaults to /dev/dri/card0.

format

Pixel format of the framebuffer. Defaults to bgr0.

format_modifier

Format modifier to signal on output frames. This is necessary to import correctly into some APIs, but
can’t be autodetected. See the libdrm documentation for possible values.

crtc_id

KMS CRTC ID to define the capture source. The first active plane on the given CRTC will be used.

plane_id

KMS plane ID to define the capture source. Defaults to the first active plane found if neither
crtc_id nor plane_id are specified.

framerate

Framerate to capture at. This is not synchronised to any page flipping or framebuffer changes - it just
defines the interval at which the framebuffer is sampled. Sampling faster than the framebuffer update
rate will generate independent frames with the same content. Defaults to 30.

26.5.2 Examples# TOC

Capture from the first active plane, download the result to normal frames and encode. This will only
work if the framebuffer is both linear and mappable - if not, the result may be scrambled or fail to
download.

ffmpeg -f kmsgrab -i - -vf ’hwdownload,format=bgr0’ output.mp4

Capture from CRTC ID 42 at 60fps, map the result to VAAPI, convert to NV12 and encode as H.264.

ffmpeg -crtc_id 42 -framerate 60 -f kmsgrab -i - -vf ’hwmap=derive_device=vaapi,scale_vaapi=w=1920:h=1080:format=nv12’ -c:v h264_vaapi output.mp4

26.6 libndi_newtek# TOC

The libndi_newtek input device provides capture capabilities for using NDI (Network Device Interface,
standard created by NewTek).

Input filename is a NDI source name that could be found by sending -find_sources 1 to command line - it
has no specific syntax but human-readable formatted.

To enable this input device, you need the NDI SDK and you need to configure with the appropriate
--extra-cflags and --extra-ldflags.

26.6.1 Options# TOC

find_sources

If set to true, print a list of found/available NDI sources and exit. Defaults to false.

wait_sources

Override time to wait until the number of online sources have changed. Defaults to 0.5.

allow_video_fields

When this flag is false, all video that you receive will be progressive. Defaults to true.

26.6.2 Examples# TOC

List input devices:

ffmpeg -f libndi_newtek -find_sources 1 -i dummy

Restream to NDI:

ffmpeg -f libndi_newtek -i "DEV-5.INTERNAL.M1STEREO.TV (NDI_SOURCE_NAME_1)" -f libndi_newtek -y NDI_SOURCE_NAME_2

26.7 dshow# TOC

Windows DirectShow input device.

DirectShow support is enabled when FFmpeg is built with the mingw-w64 project. Currently only audio
and video devices are supported.

Multiple devices may be opened as separate inputs, but they may also be opened on the same input, which
should improve synchronism between them.

The input name should be in the format:

TYPE=NAME[:TYPE=NAME]

where TYPE can be either audio or video, and NAME is the device’s name or alternative name..

26.7.1 Options# TOC

If no options are specified, the device’s defaults are used. If the device does not support the requested
options, it will fail to open.

video_size

Set the video size in the captured video.

framerate

Set the frame rate in the captured video.

sample_rate

Set the sample rate (in Hz) of the captured audio.

sample_size

Set the sample size (in bits) of the captured audio.

channels

Set the number of channels in the captured audio.

list_devices

If set to true, print a list of devices and exit.

list_options

If set to true, print a list of selected device’s options and exit.

video_device_number

Set video device number for devices with the same name (starts at 0, defaults to 0).

audio_device_number

Set audio device number for devices with the same name (starts at 0, defaults to 0).

pixel_format

Select pixel format to be used by DirectShow. This may only be set when the video codec is not set
or set to rawvideo.

audio_buffer_size

Set audio device buffer size in milliseconds (which can directly impact latency, depending on the
device). Defaults to using the audio device’s default buffer size (typically some multiple of 500ms).
Setting this value too low can degrade performance. See also
http://msdn.microsoft.com/en-us/library/windows/desktop/dd377582(v=vs.85).aspx

video_pin_name

Select video capture pin to use by name or alternative name.

audio_pin_name

Select audio capture pin to use by name or alternative name.

crossbar_video_input_pin_number

Select video input pin number for crossbar device. This will be routed to the crossbar device’s Video
Decoder output pin. Note that changing this value can affect future invocations (sets a new default)
until system reboot occurs.

http://msdn.microsoft.com/en-us/library/windows/desktop/dd377582�v=vs.85�.aspx

crossbar_audio_input_pin_number

Select audio input pin number for crossbar device. This will be routed to the crossbar device’s Audio
Decoder output pin. Note that changing this value can affect future invocations (sets a new default)
until system reboot occurs.

show_video_device_dialog

If set to true, before capture starts, popup a display dialog to the end user, allowing them to change
video filter properties and configurations manually. Note that for crossbar devices, adjusting values in
this dialog may be needed at times to toggle between PAL (25 fps) and NTSC (29.97) input frame
rates, sizes, interlacing, etc. Changing these values can enable different scan rates/frame rates and
avoiding green bars at the bottom, flickering scan lines, etc. Note that with some devices, changing
these properties can also affect future invocations (sets new defaults) until system reboot occurs.

show_audio_device_dialog

If set to true, before capture starts, popup a display dialog to the end user, allowing them to change
audio filter properties and configurations manually.

show_video_crossbar_connection_dialog

If set to true, before capture starts, popup a display dialog to the end user, allowing them to
manually modify crossbar pin routings, when it opens a video device.

show_audio_crossbar_connection_dialog

If set to true, before capture starts, popup a display dialog to the end user, allowing them to
manually modify crossbar pin routings, when it opens an audio device.

show_analog_tv_tuner_dialog

If set to true, before capture starts, popup a display dialog to the end user, allowing them to
manually modify TV channels and frequencies.

show_analog_tv_tuner_audio_dialog

If set to true, before capture starts, popup a display dialog to the end user, allowing them to
manually modify TV audio (like mono vs. stereo, Language A,B or C).

audio_device_load

Load an audio capture filter device from file instead of searching it by name. It may load additional
parameters too, if the filter supports the serialization of its properties to. To use this an audio capture
source has to be specified, but it can be anything even fake one.

audio_device_save

Save the currently used audio capture filter device and its parameters (if the filter supports it) to a file.
If a file with the same name exists it will be overwritten.

video_device_load

Load a video capture filter device from file instead of searching it by name. It may load additional
parameters too, if the filter supports the serialization of its properties to. To use this a video capture
source has to be specified, but it can be anything even fake one.

video_device_save

Save the currently used video capture filter device and its parameters (if the filter supports it) to a file.
If a file with the same name exists it will be overwritten.

26.7.2 Examples# TOC

Print the list of DirectShow supported devices and exit:

$ ffmpeg -list_devices true -f dshow -i dummy

Open video device Camera:

$ ffmpeg -f dshow -i video="Camera"

Open second video device with name Camera:

$ ffmpeg -f dshow -video_device_number 1 -i video="Camera"

Open video device Camera and audio device Microphone:

$ ffmpeg -f dshow -i video="Camera":audio="Microphone"

Print the list of supported options in selected device and exit:

$ ffmpeg -list_options true -f dshow -i video="Camera"

Specify pin names to capture by name or alternative name, specify alternative device name:
$ ffmpeg -f dshow -audio_pin_name "Audio Out" -video_pin_name 2 -i video=video="@device_pnp_\\?\pci#ven_1a0a&dev_6200&subsys_62021461&rev_01#4&e2c7dd6&0&00e1#{65e8773d-8f56-11d0-a3b9-00a0c9223196}\{ca465100-deb0-4d59-818f-8c477184adf6}":audio="Microphone"

Configure a crossbar device, specifying crossbar pins, allow user to adjust video capture properties at
startup:

$ ffmpeg -f dshow -show_video_device_dialog true -crossbar_video_input_pin_number 0
 -crossbar_audio_input_pin_number 3 -i video="AVerMedia BDA Analog Capture":audio="AVerMedia BDA Analog Capture"

26.8 fbdev# TOC

Linux framebuffer input device.

The Linux framebuffer is a graphic hardware-independent abstraction layer to show graphics on a
computer monitor, typically on the console. It is accessed through a file device node, usually /dev/fb0.

For more detailed information read the file Documentation/fb/framebuffer.txt included in the Linux source
tree.

See also http://linux-fbdev.sourceforge.net/, and fbset(1).

To record from the framebuffer device /dev/fb0 with ffmpeg:

ffmpeg -f fbdev -framerate 10 -i /dev/fb0 out.avi

You can take a single screenshot image with the command:

ffmpeg -f fbdev -framerate 1 -i /dev/fb0 -frames:v 1 screenshot.jpeg

26.8.1 Options# TOC

framerate

Set the frame rate. Default is 25.

26.9 gdigrab# TOC

Win32 GDI-based screen capture device.

This device allows you to capture a region of the display on Windows.

There are two options for the input filename:

desktop

or

title=window_title

The first option will capture the entire desktop, or a fixed region of the desktop. The second option will
instead capture the contents of a single window, regardless of its position on the screen.

For example, to grab the entire desktop using ffmpeg:

ffmpeg -f gdigrab -framerate 6 -i desktop out.mpg

Grab a 640x480 region at position 10,20:

ffmpeg -f gdigrab -framerate 6 -offset_x 10 -offset_y 20 -video_size vga -i desktop out.mpg

Grab the contents of the window named "Calculator"

ffmpeg -f gdigrab -framerate 6 -i title=Calculator out.mpg

http://linux-fbdev.sourceforge.net/

26.9.1 Options# TOC

draw_mouse

Specify whether to draw the mouse pointer. Use the value 0 to not draw the pointer. Default value is
1.

framerate

Set the grabbing frame rate. Default value is ntsc, corresponding to a frame rate of 30000/1001.

show_region

Show grabbed region on screen.

If show_region is specified with 1, then the grabbing region will be indicated on screen. With this
option, it is easy to know what is being grabbed if only a portion of the screen is grabbed.

Note that show_region is incompatible with grabbing the contents of a single window.

For example:

ffmpeg -f gdigrab -show_region 1 -framerate 6 -video_size cif -offset_x 10 -offset_y 20 -i desktop out.mpg

video_size

Set the video frame size. The default is to capture the full screen if desktop is selected, or the full
window size if title=window_title is selected.

offset_x

When capturing a region with video_size, set the distance from the left edge of the screen or desktop.

Note that the offset calculation is from the top left corner of the primary monitor on Windows. If you
have a monitor positioned to the left of your primary monitor, you will need to use a negative offset_x

value to move the region to that monitor.

offset_y

When capturing a region with video_size, set the distance from the top edge of the screen or desktop.

Note that the offset calculation is from the top left corner of the primary monitor on Windows. If you
have a monitor positioned above your primary monitor, you will need to use a negative offset_y value
to move the region to that monitor.

26.10 iec61883# TOC

FireWire DV/HDV input device using libiec61883.

To enable this input device, you need libiec61883, libraw1394 and libavc1394 installed on your system.
Use the configure option --enable-libiec61883 to compile with the device enabled.

The iec61883 capture device supports capturing from a video device connected via IEEE1394 (FireWire),
using libiec61883 and the new Linux FireWire stack (juju). This is the default DV/HDV input method in
Linux Kernel 2.6.37 and later, since the old FireWire stack was removed.

Specify the FireWire port to be used as input file, or "auto" to choose the first port connected.

26.10.1 Options# TOC

dvtype

Override autodetection of DV/HDV. This should only be used if auto detection does not work, or if
usage of a different device type should be prohibited. Treating a DV device as HDV (or vice versa)
will not work and result in undefined behavior. The values auto, dv and hdv are supported.

dvbuffer

Set maximum size of buffer for incoming data, in frames. For DV, this is an exact value. For HDV, it
is not frame exact, since HDV does not have a fixed frame size.

dvguid

Select the capture device by specifying its GUID. Capturing will only be performed from the
specified device and fails if no device with the given GUID is found. This is useful to select the input
if multiple devices are connected at the same time. Look at /sys/bus/firewire/devices to find out the
GUIDs.

26.10.2 Examples# TOC

Grab and show the input of a FireWire DV/HDV device.

ffplay -f iec61883 -i auto

Grab and record the input of a FireWire DV/HDV device, using a packet buffer of 100000 packets if
the source is HDV.

ffmpeg -f iec61883 -i auto -hdvbuffer 100000 out.mpg

26.11 jack# TOC

JACK input device.

To enable this input device during configuration you need libjack installed on your system.

A JACK input device creates one or more JACK writable clients, one for each audio channel, with name
client_name:input_N, where client_name is the name provided by the application, and N is a number
which identifies the channel. Each writable client will send the acquired data to the FFmpeg input device.

Once you have created one or more JACK readable clients, you need to connect them to one or more
JACK writable clients.

To connect or disconnect JACK clients you can use the jack_connect and jack_disconnect
programs, or do it through a graphical interface, for example with qjackctl.

To list the JACK clients and their properties you can invoke the command jack_lsp.

Follows an example which shows how to capture a JACK readable client with ffmpeg.

Create a JACK writable client with name "ffmpeg".
$ ffmpeg -f jack -i ffmpeg -y out.wav

Start the sample jack_metro readable client.
$ jack_metro -b 120 -d 0.2 -f 4000

List the current JACK clients.
$ jack_lsp -c
system:capture_1
system:capture_2
system:playback_1
system:playback_2
ffmpeg:input_1
metro:120_bpm

Connect metro to the ffmpeg writable client.
$ jack_connect metro:120_bpm ffmpeg:input_1

For more information read: http://jackaudio.org/

26.11.1 Options# TOC

channels

Set the number of channels. Default is 2.

http://jackaudio.org/

26.12 lavfi# TOC

Libavfilter input virtual device.

This input device reads data from the open output pads of a libavfilter filtergraph.

For each filtergraph open output, the input device will create a corresponding stream which is mapped to
the generated output. Currently only video data is supported. The filtergraph is specified through the
option graph.

26.12.1 Options# TOC

graph

Specify the filtergraph to use as input. Each video open output must be labelled by a unique string of
the form "outN", where N is a number starting from 0 corresponding to the mapped input stream
generated by the device. The first unlabelled output is automatically assigned to the "out0" label, but
all the others need to be specified explicitly.

The suffix "+subcc" can be appended to the output label to create an extra stream with the closed
captions packets attached to that output (experimental; only for EIA-608 / CEA-708 for now). The
subcc streams are created after all the normal streams, in the order of the corresponding stream. For
example, if there is "out19+subcc", "out7+subcc" and up to "out42", the stream #43 is subcc for
stream #7 and stream #44 is subcc for stream #19.

If not specified defaults to the filename specified for the input device.

graph_file

Set the filename of the filtergraph to be read and sent to the other filters. Syntax of the filtergraph is
the same as the one specified by the option graph.

dumpgraph

Dump graph to stderr.

26.12.2 Examples# TOC

Create a color video stream and play it back with ffplay:

ffplay -f lavfi -graph "color=c=pink [out0]" dummy

As the previous example, but use filename for specifying the graph description, and omit the "out0"
label:

ffplay -f lavfi color=c=pink

Create three different video test filtered sources and play them:

ffplay -f lavfi -graph "testsrc [out0]; testsrc,hflip [out1]; testsrc,negate [out2]" test3

Read an audio stream from a file using the amovie source and play it back with ffplay:

ffplay -f lavfi "amovie=test.wav"

Read an audio stream and a video stream and play it back with ffplay:

ffplay -f lavfi "movie=test.avi[out0];amovie=test.wav[out1]"

Dump decoded frames to images and closed captions to a file (experimental):

ffmpeg -f lavfi -i "movie=test.ts[out0+subcc]" -map v frame%08d.png -map s -c copy -f rawvideo subcc.bin

26.13 libcdio# TOC

Audio-CD input device based on libcdio.

To enable this input device during configuration you need libcdio installed on your system. It requires the
configure option --enable-libcdio.

This device allows playing and grabbing from an Audio-CD.

For example to copy with ffmpeg the entire Audio-CD in /dev/sr0, you may run the command:

ffmpeg -f libcdio -i /dev/sr0 cd.wav

26.13.1 Options# TOC

speed

Set drive reading speed. Default value is 0.

The speed is specified CD-ROM speed units. The speed is set through the libcdio
cdio_cddap_speed_set function. On many CD-ROM drives, specifying a value too large will
result in using the fastest speed.

paranoia_mode

Set paranoia recovery mode flags. It accepts one of the following values:

‘disable’
‘verify’
‘overlap’
‘neverskip’
‘full’

Default value is ‘disable’.

For more information about the available recovery modes, consult the paranoia project
documentation.

26.14 libdc1394# TOC

IIDC1394 input device, based on libdc1394 and libraw1394.

Requires the configure option --enable-libdc1394.

26.15 openal# TOC

The OpenAL input device provides audio capture on all systems with a working OpenAL 1.1
implementation.

To enable this input device during configuration, you need OpenAL headers and libraries installed on your
system, and need to configure FFmpeg with --enable-openal.

OpenAL headers and libraries should be provided as part of your OpenAL implementation, or as an
additional download (an SDK). Depending on your installation you may need to specify additional flags
via the --extra-cflags and --extra-ldflags for allowing the build system to locate the
OpenAL headers and libraries.

An incomplete list of OpenAL implementations follows:

Creative

The official Windows implementation, providing hardware acceleration with supported devices and
software fallback. See http://openal.org/.

OpenAL Soft

Portable, open source (LGPL) software implementation. Includes backends for the most common
sound APIs on the Windows, Linux, Solaris, and BSD operating systems. See
http://kcat.strangesoft.net/openal.html.

Apple

OpenAL is part of Core Audio, the official Mac OS X Audio interface. See
http://developer.apple.com/technologies/mac/audio-and-video.html

This device allows one to capture from an audio input device handled through OpenAL.

You need to specify the name of the device to capture in the provided filename. If the empty string is
provided, the device will automatically select the default device. You can get the list of the supported
devices by using the option list_devices.

http://openal.org/
http://kcat.strangesoft.net/openal.html
http://developer.apple.com/technologies/mac/audio-and-video.html

26.15.1 Options# TOC

channels

Set the number of channels in the captured audio. Only the values 1 (monaural) and 2 (stereo) are
currently supported. Defaults to 2.

sample_size

Set the sample size (in bits) of the captured audio. Only the values 8 and 16 are currently supported.
Defaults to 16.

sample_rate

Set the sample rate (in Hz) of the captured audio. Defaults to 44.1k.

list_devices

If set to true, print a list of devices and exit. Defaults to false.

26.15.2 Examples# TOC

Print the list of OpenAL supported devices and exit:

$ ffmpeg -list_devices true -f openal -i dummy out.ogg

Capture from the OpenAL device DR-BT101 via PulseAudio:

$ ffmpeg -f openal -i ’DR-BT101 via PulseAudio’ out.ogg

Capture from the default device (note the empty string ” as filename):

$ ffmpeg -f openal -i ’’ out.ogg

Capture from two devices simultaneously, writing to two different files, within the same ffmpeg
command:

$ ffmpeg -f openal -i ’DR-BT101 via PulseAudio’ out1.ogg -f openal -i ’ALSA Default’ out2.ogg

Note: not all OpenAL implementations support multiple simultaneous capture - try the latest OpenAL Soft
if the above does not work.

26.16 oss# TOC

Open Sound System input device.

The filename to provide to the input device is the device node representing the OSS input device, and is
usually set to /dev/dsp.

For example to grab from /dev/dsp using ffmpeg use the command:

ffmpeg -f oss -i /dev/dsp /tmp/oss.wav

For more information about OSS see: http://manuals.opensound.com/usersguide/dsp.html

26.16.1 Options# TOC

sample_rate

Set the sample rate in Hz. Default is 48000.

channels

Set the number of channels. Default is 2.

26.17 pulse# TOC

PulseAudio input device.

To enable this output device you need to configure FFmpeg with --enable-libpulse.

The filename to provide to the input device is a source device or the string "default"

To list the PulseAudio source devices and their properties you can invoke the command pactl list
sources.

More information about PulseAudio can be found on http://www.pulseaudio.org.

26.17.1 Options# TOC

server

Connect to a specific PulseAudio server, specified by an IP address. Default server is used when not
provided.

name

Specify the application name PulseAudio will use when showing active clients, by default it is the
LIBAVFORMAT_IDENT string.

stream_name

Specify the stream name PulseAudio will use when showing active streams, by default it is "record".

sample_rate

http://manuals.opensound.com/usersguide/dsp.html
http://www.pulseaudio.org/

Specify the samplerate in Hz, by default 48kHz is used.

channels

Specify the channels in use, by default 2 (stereo) is set.

frame_size

Specify the number of bytes per frame, by default it is set to 1024.

fragment_size

Specify the minimal buffering fragment in PulseAudio, it will affect the audio latency. By default it is
unset.

wallclock

Set the initial PTS using the current time. Default is 1.

26.17.2 Examples# TOC

Record a stream from default device:

ffmpeg -f pulse -i default /tmp/pulse.wav

26.18 sndio# TOC

sndio input device.

To enable this input device during configuration you need libsndio installed on your system.

The filename to provide to the input device is the device node representing the sndio input device, and is
usually set to /dev/audio0.

For example to grab from /dev/audio0 using ffmpeg use the command:

ffmpeg -f sndio -i /dev/audio0 /tmp/oss.wav

26.18.1 Options# TOC

sample_rate

Set the sample rate in Hz. Default is 48000.

channels

Set the number of channels. Default is 2.

26.19 video4linux2, v4l2# TOC

Video4Linux2 input video device.

"v4l2" can be used as alias for "video4linux2".

If FFmpeg is built with v4l-utils support (by using the --enable-libv4l2 configure option), it is
possible to use it with the -use_libv4l2 input device option.

The name of the device to grab is a file device node, usually Linux systems tend to automatically create
such nodes when the device (e.g. an USB webcam) is plugged into the system, and has a name of the kind
/dev/videoN, where N is a number associated to the device.

Video4Linux2 devices usually support a limited set of widthxheight sizes and frame rates. You can check
which are supported using -list_formats all for Video4Linux2 devices. Some devices, like TV
cards, support one or more standards. It is possible to list all the supported standards using
-list_standards all.

The time base for the timestamps is 1 microsecond. Depending on the kernel version and configuration,
the timestamps may be derived from the real time clock (origin at the Unix Epoch) or the monotonic clock
(origin usually at boot time, unaffected by NTP or manual changes to the clock). The -timestamps
abs or -ts abs option can be used to force conversion into the real time clock.

Some usage examples of the video4linux2 device with ffmpeg and ffplay:

List supported formats for a video4linux2 device:

ffplay -f video4linux2 -list_formats all /dev/video0

Grab and show the input of a video4linux2 device:

ffplay -f video4linux2 -framerate 30 -video_size hd720 /dev/video0

Grab and record the input of a video4linux2 device, leave the frame rate and size as previously set:

ffmpeg -f video4linux2 -input_format mjpeg -i /dev/video0 out.mpeg

For more information about Video4Linux, check http://linuxtv.org/.

26.19.1 Options# TOC

standard

Set the standard. Must be the name of a supported standard. To get a list of the supported standards,
use the list_standards option.

channel

http://linuxtv.org/

Set the input channel number. Default to -1, which means using the previously selected channel.

video_size

Set the video frame size. The argument must be a string in the form WIDTHxHEIGHT or a valid size
abbreviation.

pixel_format

Select the pixel format (only valid for raw video input).

input_format

Set the preferred pixel format (for raw video) or a codec name. This option allows one to select the
input format, when several are available.

framerate

Set the preferred video frame rate.

list_formats

List available formats (supported pixel formats, codecs, and frame sizes) and exit.

Available values are:

‘all’

Show all available (compressed and non-compressed) formats.

‘raw’

Show only raw video (non-compressed) formats.

‘compressed’

Show only compressed formats.

list_standards

List supported standards and exit.

Available values are:

‘all’

Show all supported standards.

timestamps, ts

Set type of timestamps for grabbed frames.

Available values are:

‘default’

Use timestamps from the kernel.

‘abs’

Use absolute timestamps (wall clock).

‘mono2abs’

Force conversion from monotonic to absolute timestamps.

Default value is default.

use_libv4l2

Use libv4l2 (v4l-utils) conversion functions. Default is 0.

26.20 vfwcap# TOC

VfW (Video for Windows) capture input device.

The filename passed as input is the capture driver number, ranging from 0 to 9. You may use "list" as
filename to print a list of drivers. Any other filename will be interpreted as device number 0.

26.20.1 Options# TOC

video_size

Set the video frame size.

framerate

Set the grabbing frame rate. Default value is ntsc, corresponding to a frame rate of 30000/1001.

26.21 x11grab# TOC

X11 video input device.

To enable this input device during configuration you need libxcb installed on your system. It will be
automatically detected during configuration.

This device allows one to capture a region of an X11 display.

The filename passed as input has the syntax:

[hostname]:display_number.screen_number[+x_offset,y_offset]

hostname:display_number.screen_number specifies the X11 display name of the screen to grab from.
hostname can be omitted, and defaults to "localhost". The environment variable DISPLAY contains the
default display name.

x_offset and y_offset specify the offsets of the grabbed area with respect to the top-left border of the X11
screen. They default to 0.

Check the X11 documentation (e.g. man X) for more detailed information.

Use the xdpyinfo program for getting basic information about the properties of your X11 display (e.g.
grep for "name" or "dimensions").

For example to grab from :0.0 using ffmpeg:

ffmpeg -f x11grab -framerate 25 -video_size cif -i :0.0 out.mpg

Grab at position 10,20:

ffmpeg -f x11grab -framerate 25 -video_size cif -i :0.0+10,20 out.mpg

26.21.1 Options# TOC

draw_mouse

Specify whether to draw the mouse pointer. A value of 0 specifies not to draw the pointer. Default
value is 1.

follow_mouse

Make the grabbed area follow the mouse. The argument can be centered or a number of pixels
PIXELS.

When it is specified with "centered", the grabbing region follows the mouse pointer and keeps the
pointer at the center of region; otherwise, the region follows only when the mouse pointer reaches
within PIXELS (greater than zero) to the edge of region.

For example:

ffmpeg -f x11grab -follow_mouse centered -framerate 25 -video_size cif -i :0.0 out.mpg

To follow only when the mouse pointer reaches within 100 pixels to edge:

ffmpeg -f x11grab -follow_mouse 100 -framerate 25 -video_size cif -i :0.0 out.mpg

framerate

Set the grabbing frame rate. Default value is ntsc, corresponding to a frame rate of 30000/1001.

show_region

Show grabbed region on screen.

If show_region is specified with 1, then the grabbing region will be indicated on screen. With this
option, it is easy to know what is being grabbed if only a portion of the screen is grabbed.

region_border

Set the region border thickness if -show_region 1 is used. Range is 1 to 128 and default is 3
(XCB-based x11grab only).

For example:

ffmpeg -f x11grab -show_region 1 -framerate 25 -video_size cif -i :0.0+10,20 out.mpg

With follow_mouse:

ffmpeg -f x11grab -follow_mouse centered -show_region 1 -framerate 25 -video_size cif -i :0.0 out.mpg

video_size

Set the video frame size. Default value is vga.

grab_x
grab_y

Set the grabbing region coordinates. They are expressed as offset from the top left corner of the X11
window and correspond to the x_offset and y_offset parameters in the device name. The default value
for both options is 0.

27 Output Devices# TOC

Output devices are configured elements in FFmpeg that can write multimedia data to an output device
attached to your system.

When you configure your FFmpeg build, all the supported output devices are enabled by default. You can
list all available ones using the configure option "–list-outdevs".

You can disable all the output devices using the configure option "–disable-outdevs", and selectively
enable an output device using the option "–enable-outdev=OUTDEV", or you can disable a particular input
device using the option "–disable-outdev=OUTDEV".

The option "-devices" of the ff* tools will display the list of enabled output devices.

A description of the currently available output devices follows.

27.1 alsa# TOC

ALSA (Advanced Linux Sound Architecture) output device.

27.1.1 Examples# TOC

Play a file on default ALSA device:

ffmpeg -i INPUT -f alsa default

Play a file on soundcard 1, audio device 7:

ffmpeg -i INPUT -f alsa hw:1,7

27.2 caca# TOC

CACA output device.

This output device allows one to show a video stream in CACA window. Only one CACA window is
allowed per application, so you can have only one instance of this output device in an application.

To enable this output device you need to configure FFmpeg with --enable-libcaca. libcaca is a
graphics library that outputs text instead of pixels.

For more information about libcaca, check: http://caca.zoy.org/wiki/libcaca

27.2.1 Options# TOC

window_title

Set the CACA window title, if not specified default to the filename specified for the output device.

window_size

Set the CACA window size, can be a string of the form widthxheight or a video size abbreviation. If
not specified it defaults to the size of the input video.

driver

Set display driver.

algorithm

http://caca.zoy.org/wiki/libcaca

Set dithering algorithm. Dithering is necessary because the picture being rendered has usually far
more colours than the available palette. The accepted values are listed with -list_dither
algorithms.

antialias

Set antialias method. Antialiasing smoothens the rendered image and avoids the commonly seen
staircase effect. The accepted values are listed with -list_dither antialiases.

charset

Set which characters are going to be used when rendering text. The accepted values are listed with
-list_dither charsets.

color

Set color to be used when rendering text. The accepted values are listed with -list_dither
colors.

list_drivers

If set to true, print a list of available drivers and exit.

list_dither

List available dither options related to the argument. The argument must be one of algorithms,
antialiases, charsets, colors.

27.2.2 Examples# TOC

The following command shows the ffmpeg output is an CACA window, forcing its size to 80x25:

ffmpeg -i INPUT -c:v rawvideo -pix_fmt rgb24 -window_size 80x25 -f caca -

Show the list of available drivers and exit:

ffmpeg -i INPUT -pix_fmt rgb24 -f caca -list_drivers true -

Show the list of available dither colors and exit:

ffmpeg -i INPUT -pix_fmt rgb24 -f caca -list_dither colors -

27.3 decklink# TOC

The decklink output device provides playback capabilities for Blackmagic DeckLink devices.

To enable this output device, you need the Blackmagic DeckLink SDK and you need to configure with the
appropriate --extra-cflags and --extra-ldflags. On Windows, you need to run the IDL files
through widl.

DeckLink is very picky about the formats it supports. Pixel format is always uyvy422, framerate, field
order and video size must be determined for your device with -list_formats 1. Audio sample rate is
always 48 kHz.

27.3.1 Options# TOC

list_devices

If set to true, print a list of devices and exit. Defaults to false.

list_formats

If set to true, print a list of supported formats and exit. Defaults to false.

preroll

Amount of time to preroll video in seconds. Defaults to 0.5.

27.3.2 Examples# TOC

List output devices:

ffmpeg -i test.avi -f decklink -list_devices 1 dummy

List supported formats:

ffmpeg -i test.avi -f decklink -list_formats 1 ’DeckLink Mini Monitor’

Play video clip:

ffmpeg -i test.avi -f decklink -pix_fmt uyvy422 ’DeckLink Mini Monitor’

Play video clip with non-standard framerate or video size:

ffmpeg -i test.avi -f decklink -pix_fmt uyvy422 -s 720x486 -r 24000/1001 ’DeckLink Mini Monitor’

27.4 libndi_newtek# TOC

The libndi_newtek output device provides playback capabilities for using NDI (Network Device Interface,
standard created by NewTek).

Output filename is a NDI name.

To enable this output device, you need the NDI SDK and you need to configure with the appropriate
--extra-cflags and --extra-ldflags.

NDI uses uyvy422 pixel format natively, but also supports bgra, bgr0, rgba and rgb0.

27.4.1 Options# TOC

reference_level

The audio reference level in dB. This specifies how many dB above the reference level (+4dBU) is
the full range of 16 bit audio. Defaults to 0.

clock_video

These specify whether video "clock" themselves. Defaults to false.

clock_audio

These specify whether audio "clock" themselves. Defaults to false.

27.4.2 Examples# TOC

Play video clip:

ffmpeg -i "udp://@239.1.1.1:10480?fifo_size=1000000&overrun_nonfatal=1" -vf "scale=720:576,fps=fps=25,setdar=dar=16/9,format=pix_fmts=uyvy422" -f libndi_newtek NEW_NDI1

27.5 fbdev# TOC

Linux framebuffer output device.

The Linux framebuffer is a graphic hardware-independent abstraction layer to show graphics on a
computer monitor, typically on the console. It is accessed through a file device node, usually /dev/fb0.

For more detailed information read the file Documentation/fb/framebuffer.txt included in the
Linux source tree.

27.5.1 Options# TOC

xoffset
yoffset

Set x/y coordinate of top left corner. Default is 0.

27.5.2 Examples# TOC

Play a file on framebuffer device /dev/fb0. Required pixel format depends on current framebuffer
settings.

ffmpeg -re -i INPUT -c:v rawvideo -pix_fmt bgra -f fbdev /dev/fb0

See also http://linux-fbdev.sourceforge.net/, and fbset(1).

http://linux-fbdev.sourceforge.net/

27.6 opengl# TOC

OpenGL output device.

To enable this output device you need to configure FFmpeg with --enable-opengl.

This output device allows one to render to OpenGL context. Context may be provided by application or
default SDL window is created.

When device renders to external context, application must implement handlers for following messages:
AV_DEV_TO_APP_CREATE_WINDOW_BUFFER - create OpenGL context on current thread.
AV_DEV_TO_APP_PREPARE_WINDOW_BUFFER - make OpenGL context current.
AV_DEV_TO_APP_DISPLAY_WINDOW_BUFFER - swap buffers.
AV_DEV_TO_APP_DESTROY_WINDOW_BUFFER - destroy OpenGL context. Application is also
required to inform a device about current resolution by sending AV_APP_TO_DEV_WINDOW_SIZE
message.

27.6.1 Options# TOC

background

Set background color. Black is a default.

no_window

Disables default SDL window when set to non-zero value. Application must provide OpenGL context
and both window_size_cb and window_swap_buffers_cb callbacks when set.

window_title

Set the SDL window title, if not specified default to the filename specified for the output device.
Ignored when no_window is set.

window_size

Set preferred window size, can be a string of the form widthxheight or a video size abbreviation. If
not specified it defaults to the size of the input video, downscaled according to the aspect ratio.
Mostly usable when no_window is not set.

27.6.2 Examples# TOC

Play a file on SDL window using OpenGL rendering:

ffmpeg -i INPUT -f opengl "window title"

27.7 oss# TOC

OSS (Open Sound System) output device.

27.8 pulse# TOC

PulseAudio output device.

To enable this output device you need to configure FFmpeg with --enable-libpulse.

More information about PulseAudio can be found on http://www.pulseaudio.org

27.8.1 Options# TOC

server

Connect to a specific PulseAudio server, specified by an IP address. Default server is used when not
provided.

name

Specify the application name PulseAudio will use when showing active clients, by default it is the
LIBAVFORMAT_IDENT string.

stream_name

Specify the stream name PulseAudio will use when showing active streams, by default it is set to the
specified output name.

device

Specify the device to use. Default device is used when not provided. List of output devices can be
obtained with command pactl list sinks.

buffer_size
buffer_duration

Control the size and duration of the PulseAudio buffer. A small buffer gives more control, but
requires more frequent updates.

buffer_size specifies size in bytes while buffer_duration specifies duration in
milliseconds.

When both options are provided then the highest value is used (duration is recalculated to bytes using
stream parameters). If they are set to 0 (which is default), the device will use the default PulseAudio
duration value. By default PulseAudio set buffer duration to around 2 seconds.

http://www.pulseaudio.org/

prebuf

Specify pre-buffering size in bytes. The server does not start with playback before at least prebuf
bytes are available in the buffer. By default this option is initialized to the same value as
buffer_size or buffer_duration (whichever is bigger).

minreq

Specify minimum request size in bytes. The server does not request less than minreq bytes from the
client, instead waits until the buffer is free enough to request more bytes at once. It is recommended
to not set this option, which will initialize this to a value that is deemed sensible by the server.

27.8.2 Examples# TOC

Play a file on default device on default server:

ffmpeg -i INPUT -f pulse "stream name"

27.9 sdl# TOC

SDL (Simple DirectMedia Layer) output device.

This output device allows one to show a video stream in an SDL window. Only one SDL window is
allowed per application, so you can have only one instance of this output device in an application.

To enable this output device you need libsdl installed on your system when configuring your build.

For more information about SDL, check: http://www.libsdl.org/

27.9.1 Options# TOC

window_title

Set the SDL window title, if not specified default to the filename specified for the output device.

icon_title

Set the name of the iconified SDL window, if not specified it is set to the same value of window_title.

window_size

Set the SDL window size, can be a string of the form widthxheight or a video size abbreviation. If not
specified it defaults to the size of the input video, downscaled according to the aspect ratio.

window_fullscreen

Set fullscreen mode when non-zero value is provided. Default value is zero.

http://www.libsdl.org/

27.9.2 Interactive commands# TOC

The window created by the device can be controlled through the following interactive commands.

q, ESC

Quit the device immediately.

27.9.3 Examples# TOC

The following command shows the ffmpeg output is an SDL window, forcing its size to the qcif format:

ffmpeg -i INPUT -c:v rawvideo -pix_fmt yuv420p -window_size qcif -f sdl "SDL output"

27.10 sndio# TOC

sndio audio output device.

27.11 xv# TOC

XV (XVideo) output device.

This output device allows one to show a video stream in a X Window System window.

27.11.1 Options# TOC

display_name

Specify the hardware display name, which determines the display and communications domain to be
used.

The display name or DISPLAY environment variable can be a string in the format
hostname[:number[.screen_number]].

hostname specifies the name of the host machine on which the display is physically attached. number

specifies the number of the display server on that host machine. screen_number specifies the screen
to be used on that server.

If unspecified, it defaults to the value of the DISPLAY environment variable.

For example, dual-headed:0.1 would specify screen 1 of display 0 on the machine named
“dual-headed”.

Check the X11 specification for more detailed information about the display name format.

window_id

When set to non-zero value then device doesn’t create new window, but uses existing one with
provided window_id. By default this options is set to zero and device creates its own window.

window_size

Set the created window size, can be a string of the form widthxheight or a video size abbreviation. If
not specified it defaults to the size of the input video. Ignored when window_id is set.

window_x
window_y

Set the X and Y window offsets for the created window. They are both set to 0 by default. The values
may be ignored by the window manager. Ignored when window_id is set.

window_title

Set the window title, if not specified default to the filename specified for the output device. Ignored
when window_id is set.

For more information about XVideo see http://www.x.org/.

27.11.2 Examples# TOC

Decode, display and encode video input with ffmpeg at the same time:

ffmpeg -i INPUT OUTPUT -f xv display

Decode and display the input video to multiple X11 windows:

ffmpeg -i INPUT -f xv normal -vf negate -f xv negated

28 Resampler Options# TOC

The audio resampler supports the following named options.

Options may be set by specifying -option value in the FFmpeg tools, option=value for the aresample filter,
by setting the value explicitly in the SwrContext options or using the libavutil/opt.h API for
programmatic use.

ich, in_channel_count

Set the number of input channels. Default value is 0. Setting this value is not mandatory if the
corresponding channel layout in_channel_layout is set.

och, out_channel_count

Set the number of output channels. Default value is 0. Setting this value is not mandatory if the
corresponding channel layout out_channel_layout is set.

http://www.x.org/

uch, used_channel_count

Set the number of used input channels. Default value is 0. This option is only used for special
remapping.

isr, in_sample_rate

Set the input sample rate. Default value is 0.

osr, out_sample_rate

Set the output sample rate. Default value is 0.

isf, in_sample_fmt

Specify the input sample format. It is set by default to none.

osf, out_sample_fmt

Specify the output sample format. It is set by default to none.

tsf, internal_sample_fmt

Set the internal sample format. Default value is none. This will automatically be chosen when it is
not explicitly set.

icl, in_channel_layout
ocl, out_channel_layout

Set the input/output channel layout.

See (ffmpeg-utils)the Channel Layout section in the ffmpeg-utils(1) manual for the required syntax.

clev, center_mix_level

Set the center mix level. It is a value expressed in deciBel, and must be in the interval [-32,32].

slev, surround_mix_level

Set the surround mix level. It is a value expressed in deciBel, and must be in the interval [-32,32].

lfe_mix_level

Set LFE mix into non LFE level. It is used when there is a LFE input but no LFE output. It is a value
expressed in deciBel, and must be in the interval [-32,32].

rmvol, rematrix_volume

Set rematrix volume. Default value is 1.0.

rematrix_maxval

Set maximum output value for rematrixing. This can be used to prevent clipping vs. preventing
volume reduction. A value of 1.0 prevents clipping.

flags, swr_flags

Set flags used by the converter. Default value is 0.

It supports the following individual flags:

res

force resampling, this flag forces resampling to be used even when the input and output sample
rates match.

dither_scale

Set the dither scale. Default value is 1.

dither_method

Set dither method. Default value is 0.

Supported values:

‘rectangular’

select rectangular dither

‘triangular’

select triangular dither

‘triangular_hp’

select triangular dither with high pass

‘lipshitz’

select Lipshitz noise shaping dither.

‘shibata’

select Shibata noise shaping dither.

‘low_shibata’

select low Shibata noise shaping dither.

‘high_shibata’

select high Shibata noise shaping dither.

‘f_weighted’

select f-weighted noise shaping dither

‘modified_e_weighted’

select modified-e-weighted noise shaping dither

‘improved_e_weighted’

select improved-e-weighted noise shaping dither

resampler

Set resampling engine. Default value is swr.

Supported values:

‘swr’

select the native SW Resampler; filter options precision and cheby are not applicable in this
case.

‘soxr’

select the SoX Resampler (where available); compensation, and filter options filter_size,
phase_shift, exact_rational, filter_type & kaiser_beta, are not applicable in this case.

filter_size

For swr only, set resampling filter size, default value is 32.

phase_shift

For swr only, set resampling phase shift, default value is 10, and must be in the interval [0,30].

linear_interp

Use linear interpolation when enabled (the default). Disable it if you want to preserve speed instead
of quality when exact_rational fails.

exact_rational

For swr only, when enabled, try to use exact phase_count based on input and output sample rate.
However, if it is larger than 1 << phase_shift, the phase_count will be 1 << phase_shift
as fallback. Default is enabled.

cutoff

Set cutoff frequency (swr: 6dB point; soxr: 0dB point) ratio; must be a float value between 0 and 1.
Default value is 0.97 with swr, and 0.91 with soxr (which, with a sample-rate of 44100, preserves the
entire audio band to 20kHz).

precision

For soxr only, the precision in bits to which the resampled signal will be calculated. The default value
of 20 (which, with suitable dithering, is appropriate for a destination bit-depth of 16) gives SoX’s
’High Quality’; a value of 28 gives SoX’s ’Very High Quality’.

cheby

For soxr only, selects passband rolloff none (Chebyshev) & higher-precision approximation for
’irrational’ ratios. Default value is 0.

async

For swr only, simple 1 parameter audio sync to timestamps using stretching, squeezing, filling and
trimming. Setting this to 1 will enable filling and trimming, larger values represent the maximum
amount in samples that the data may be stretched or squeezed for each second. Default value is 0,
thus no compensation is applied to make the samples match the audio timestamps.

first_pts

For swr only, assume the first pts should be this value. The time unit is 1 / sample rate. This allows
for padding/trimming at the start of stream. By default, no assumption is made about the first frame’s
expected pts, so no padding or trimming is done. For example, this could be set to 0 to pad the
beginning with silence if an audio stream starts after the video stream or to trim any samples with a
negative pts due to encoder delay.

min_comp

For swr only, set the minimum difference between timestamps and audio data (in seconds) to trigger
stretching/squeezing/filling or trimming of the data to make it match the timestamps. The default is
that stretching/squeezing/filling and trimming is disabled (min_comp = FLT_MAX).

min_hard_comp

For swr only, set the minimum difference between timestamps and audio data (in seconds) to trigger
adding/dropping samples to make it match the timestamps. This option effectively is a threshold to
select between hard (trim/fill) and soft (squeeze/stretch) compensation. Note that all compensation is

by default disabled through min_comp. The default is 0.1.

comp_duration

For swr only, set duration (in seconds) over which data is stretched/squeezed to make it match the
timestamps. Must be a non-negative double float value, default value is 1.0.

max_soft_comp

For swr only, set maximum factor by which data is stretched/squeezed to make it match the
timestamps. Must be a non-negative double float value, default value is 0.

matrix_encoding

Select matrixed stereo encoding.

It accepts the following values:

‘none’

select none

‘dolby’

select Dolby

‘dplii’

select Dolby Pro Logic II

Default value is none.

filter_type

For swr only, select resampling filter type. This only affects resampling operations.

It accepts the following values:

‘cubic’

select cubic

‘blackman_nuttall’

select Blackman Nuttall windowed sinc

‘kaiser’

select Kaiser windowed sinc

kaiser_beta

For swr only, set Kaiser window beta value. Must be a double float value in the interval [2,16],
default value is 9.

output_sample_bits

For swr only, set number of used output sample bits for dithering. Must be an integer in the interval
[0,64], default value is 0, which means it’s not used.

29 Scaler Options# TOC

The video scaler supports the following named options.

Options may be set by specifying -option value in the FFmpeg tools. For programmatic use, they can be
set explicitly in the SwsContext options or through the libavutil/opt.h API.

sws_flags

Set the scaler flags. This is also used to set the scaling algorithm. Only a single algorithm should be
selected. Default value is ‘bicubic’.

It accepts the following values:

‘fast_bilinear’

Select fast bilinear scaling algorithm.

‘bilinear’

Select bilinear scaling algorithm.

‘bicubic’

Select bicubic scaling algorithm.

‘experimental’

Select experimental scaling algorithm.

‘neighbor’

Select nearest neighbor rescaling algorithm.

‘area’

Select averaging area rescaling algorithm.

‘bicublin’

Select bicubic scaling algorithm for the luma component, bilinear for chroma components.

‘gauss’

Select Gaussian rescaling algorithm.

‘sinc’

Select sinc rescaling algorithm.

‘lanczos’

Select Lanczos rescaling algorithm.

‘spline’

Select natural bicubic spline rescaling algorithm.

‘print_info’

Enable printing/debug logging.

‘accurate_rnd’

Enable accurate rounding.

‘full_chroma_int’

Enable full chroma interpolation.

‘full_chroma_inp’

Select full chroma input.

‘bitexact’

Enable bitexact output.

srcw

Set source width.

srch

Set source height.

dstw

Set destination width.

dsth

Set destination height.

src_format

Set source pixel format (must be expressed as an integer).

dst_format

Set destination pixel format (must be expressed as an integer).

src_range

Select source range.

dst_range

Select destination range.

param0, param1

Set scaling algorithm parameters. The specified values are specific of some scaling algorithms and
ignored by others. The specified values are floating point number values.

sws_dither

Set the dithering algorithm. Accepts one of the following values. Default value is ‘auto’.

‘auto’

automatic choice

‘none’

no dithering

‘bayer’

bayer dither

‘ed’

error diffusion dither

‘a_dither’

arithmetic dither, based using addition

‘x_dither’

arithmetic dither, based using xor (more random/less apparent patterning that a_dither).

alphablend

Set the alpha blending to use when the input has alpha but the output does not. Default value is
‘none’.

‘uniform_color’

Blend onto a uniform background color

‘checkerboard’

Blend onto a checkerboard

‘none’

No blending

30 Filtering Introduction# TOC

Filtering in FFmpeg is enabled through the libavfilter library.

In libavfilter, a filter can have multiple inputs and multiple outputs. To illustrate the sorts of things that are
possible, we consider the following filtergraph.

 [main]
input --> split ---------------------> overlay --> output
 | ^
 |[tmp] [flip]|
 +-----> crop --> vflip -------+

This filtergraph splits the input stream in two streams, then sends one stream through the crop filter and
the vflip filter, before merging it back with the other stream by overlaying it on top. You can use the
following command to achieve this:

ffmpeg -i INPUT -vf "split [main][tmp]; [tmp] crop=iw:ih/2:0:0, vflip [flip]; [main][flip] overlay=0:H/2" OUTPUT

The result will be that the top half of the video is mirrored onto the bottom half of the output video.

Filters in the same linear chain are separated by commas, and distinct linear chains of filters are separated
by semicolons. In our example, crop,vflip are in one linear chain, split and overlay are separately in
another. The points where the linear chains join are labelled by names enclosed in square brackets. In the
example, the split filter generates two outputs that are associated to the labels [main] and [tmp].

The stream sent to the second output of split, labelled as [tmp], is processed through the crop filter, which
crops away the lower half part of the video, and then vertically flipped. The overlay filter takes in input the
first unchanged output of the split filter (which was labelled as [main]), and overlay on its lower half the
output generated by the crop,vflip filterchain.

Some filters take in input a list of parameters: they are specified after the filter name and an equal sign,
and are separated from each other by a colon.

There exist so-called source filters that do not have an audio/video input, and sink filters that will not have
audio/video output.

31 graph2dot# TOC

The graph2dot program included in the FFmpeg tools directory can be used to parse a filtergraph
description and issue a corresponding textual representation in the dot language.

Invoke the command:

graph2dot -h

to see how to use graph2dot.

You can then pass the dot description to the dot program (from the graphviz suite of programs) and
obtain a graphical representation of the filtergraph.

For example the sequence of commands:

echo GRAPH_DESCRIPTION | \
tools/graph2dot -o graph.tmp && \
dot -Tpng graph.tmp -o graph.png && \
display graph.png

can be used to create and display an image representing the graph described by the
GRAPH_DESCRIPTION string. Note that this string must be a complete self-contained graph, with its
inputs and outputs explicitly defined. For example if your command line is of the form:

ffmpeg -i infile -vf scale=640:360 outfile

your GRAPH_DESCRIPTION string will need to be of the form:

nullsrc,scale=640:360,nullsink

you may also need to set the nullsrc parameters and add a format filter in order to simulate a specific input
file.

32 Filtergraph description# TOC

A filtergraph is a directed graph of connected filters. It can contain cycles, and there can be multiple links
between a pair of filters. Each link has one input pad on one side connecting it to one filter from which it
takes its input, and one output pad on the other side connecting it to one filter accepting its output.

Each filter in a filtergraph is an instance of a filter class registered in the application, which defines the
features and the number of input and output pads of the filter.

A filter with no input pads is called a "source", and a filter with no output pads is called a "sink".

32.1 Filtergraph syntax# TOC

A filtergraph has a textual representation, which is recognized by the -filter/-vf/-af and
-filter_complex options in ffmpeg and -vf/-af in ffplay, and by the
avfilter_graph_parse_ptr() function defined in libavfilter/avfilter.h.

A filterchain consists of a sequence of connected filters, each one connected to the previous one in the
sequence. A filterchain is represented by a list of ","-separated filter descriptions.

A filtergraph consists of a sequence of filterchains. A sequence of filterchains is represented by a list of
";"-separated filterchain descriptions.

A filter is represented by a string of the form:
[in_link_1]...[in_link_N]filter_name@id=arguments[out_link_1]...[out_link_M]

filter_name is the name of the filter class of which the described filter is an instance of, and has to be the
name of one of the filter classes registered in the program optionally followed by "@id". The name of the
filter class is optionally followed by a string "=arguments".

arguments is a string which contains the parameters used to initialize the filter instance. It may have one of
two forms:

A ’:’-separated list of key=value pairs.
A ’:’-separated list of value. In this case, the keys are assumed to be the option names in the order
they are declared. E.g. the fade filter declares three options in this order – type, start_frame
and nb_frames. Then the parameter list in:0:30 means that the value in is assigned to the option
type, 0 to start_frame and 30 to nb_frames.
A ’:’-separated list of mixed direct value and long key=value pairs. The direct value must precede the
key=value pairs, and follow the same constraints order of the previous point. The following
key=value pairs can be set in any preferred order.

If the option value itself is a list of items (e.g. the format filter takes a list of pixel formats), the items in
the list are usually separated by ‘|’.

The list of arguments can be quoted using the character ‘’’ as initial and ending mark, and the character
‘\’ for escaping the characters within the quoted text; otherwise the argument string is considered
terminated when the next special character (belonging to the set ‘[]=;,’) is encountered.

The name and arguments of the filter are optionally preceded and followed by a list of link labels. A link
label allows one to name a link and associate it to a filter output or input pad. The preceding labels
in_link_1 ... in_link_N, are associated to the filter input pads, the following labels out_link_1 ...
out_link_M, are associated to the output pads.

When two link labels with the same name are found in the filtergraph, a link between the corresponding
input and output pad is created.

If an output pad is not labelled, it is linked by default to the first unlabelled input pad of the next filter in
the filterchain. For example in the filterchain

nullsrc, split[L1], [L2]overlay, nullsink

the split filter instance has two output pads, and the overlay filter instance two input pads. The first output
pad of split is labelled "L1", the first input pad of overlay is labelled "L2", and the second output pad of
split is linked to the second input pad of overlay, which are both unlabelled.

In a filter description, if the input label of the first filter is not specified, "in" is assumed; if the output label
of the last filter is not specified, "out" is assumed.

In a complete filterchain all the unlabelled filter input and output pads must be connected. A filtergraph is
considered valid if all the filter input and output pads of all the filterchains are connected.

Libavfilter will automatically insert scale filters where format conversion is required. It is possible to
specify swscale flags for those automatically inserted scalers by prepending sws_flags=flags; to the
filtergraph description.

Here is a BNF description of the filtergraph syntax:

NAME ::= sequence of alphanumeric characters and ’_’
FILTER_NAME ::= NAME["@"NAME]
LINKLABEL ::= "[" NAME "]"
LINKLABELS ::= LINKLABEL [LINKLABELS]
FILTER_ARGUMENTS ::= sequence of chars (possibly quoted)
FILTER ::= [LINKLABELS] FILTER_NAME ["=" FILTER_ARGUMENTS] [LINKLABELS]
FILTERCHAIN ::= FILTER [,FILTERCHAIN]
FILTERGRAPH ::= [sws_flags=flags;] FILTERCHAIN [;FILTERGRAPH]

32.2 Notes on filtergraph escaping# TOC

Filtergraph description composition entails several levels of escaping. See (ffmpeg-utils)the "Quoting and
escaping" section in the ffmpeg-utils(1) manual for more information about the employed escaping
procedure.

A first level escaping affects the content of each filter option value, which may contain the special
character : used to separate values, or one of the escaping characters \’.

A second level escaping affects the whole filter description, which may contain the escaping characters \’
or the special characters [],; used by the filtergraph description.

Finally, when you specify a filtergraph on a shell commandline, you need to perform a third level escaping
for the shell special characters contained within it.

For example, consider the following string to be embedded in the drawtext filter description text value:

this is a ’string’: may contain one, or more, special characters

This string contains the ’ special escaping character, and the : special character, so it needs to be escaped
in this way:

text=this is a \’string\’\: may contain one, or more, special characters

A second level of escaping is required when embedding the filter description in a filtergraph description,
in order to escape all the filtergraph special characters. Thus the example above becomes:

drawtext=text=this is a \\\’string\\\’\\: may contain one\, or more\, special characters

(note that in addition to the \’ escaping special characters, also , needs to be escaped).

Finally an additional level of escaping is needed when writing the filtergraph description in a shell
command, which depends on the escaping rules of the adopted shell. For example, assuming that \ is
special and needs to be escaped with another \, the previous string will finally result in:

-vf "drawtext=text=this is a \\\\\\’string\\\\\\’\\\\: may contain one\\, or more\\, special characters"

33 Timeline editing# TOC

Some filters support a generic enable option. For the filters supporting timeline editing, this option can
be set to an expression which is evaluated before sending a frame to the filter. If the evaluation is
non-zero, the filter will be enabled, otherwise the frame will be sent unchanged to the next filter in the
filtergraph.

The expression accepts the following values:

‘t’

timestamp expressed in seconds, NAN if the input timestamp is unknown

‘n’

sequential number of the input frame, starting from 0

‘pos’

the position in the file of the input frame, NAN if unknown

‘w’
‘h’

width and height of the input frame if video

Additionally, these filters support an enable command that can be used to re-define the expression.

Like any other filtering option, the enable option follows the same rules.

For example, to enable a blur filter (smartblur) from 10 seconds to 3 minutes, and a curves filter starting at
3 seconds:

smartblur = enable=’between(t,10,3*60)’,
curves = enable=’gte(t,3)’ : preset=cross_process

See ffmpeg -filters to view which filters have timeline support.

34 Options for filters with several inputs (framesync)# TOC

Some filters with several inputs support a common set of options. These options can only be set by name,
not with the short notation.

eof_action

The action to take when EOF is encountered on the secondary input; it accepts one of the following
values:

repeat

Repeat the last frame (the default).

endall

End both streams.

pass

Pass the main input through.

shortest

If set to 1, force the output to terminate when the shortest input terminates. Default value is 0.

repeatlast

If set to 1, force the filter to extend the last frame of secondary streams until the end of the primary
stream. A value of 0 disables this behavior. Default value is 1.

35 Audio Filters# TOC

When you configure your FFmpeg build, you can disable any of the existing filters using
--disable-filters. The configure output will show the audio filters included in your build.

Below is a description of the currently available audio filters.

35.1 acompressor# TOC

A compressor is mainly used to reduce the dynamic range of a signal. Especially modern music is mostly
compressed at a high ratio to improve the overall loudness. It’s done to get the highest attention of a
listener, "fatten" the sound and bring more "power" to the track. If a signal is compressed too much it may
sound dull or "dead" afterwards or it may start to "pump" (which could be a powerful effect but can also
destroy a track completely). The right compression is the key to reach a professional sound and is the high
art of mixing and mastering. Because of its complex settings it may take a long time to get the right feeling
for this kind of effect.

Compression is done by detecting the volume above a chosen level threshold and dividing it by the
factor set with ratio. So if you set the threshold to -12dB and your signal reaches -6dB a ratio of 2:1
will result in a signal at -9dB. Because an exact manipulation of the signal would cause distortion of the
waveform the reduction can be levelled over the time. This is done by setting "Attack" and "Release".
attack determines how long the signal has to rise above the threshold before any reduction will occur
and release sets the time the signal has to fall below the threshold to reduce the reduction again.
Shorter signals than the chosen attack time will be left untouched. The overall reduction of the signal can
be made up afterwards with the makeup setting. So compressing the peaks of a signal about 6dB and
raising the makeup to this level results in a signal twice as loud than the source. To gain a softer entry in
the compression the knee flattens the hard edge at the threshold in the range of the chosen decibels.

The filter accepts the following options:

level_in

Set input gain. Default is 1. Range is between 0.015625 and 64.

threshold

If a signal of stream rises above this level it will affect the gain reduction. By default it is 0.125.
Range is between 0.00097563 and 1.

ratio

Set a ratio by which the signal is reduced. 1:2 means that if the level rose 4dB above the threshold, it
will be only 2dB above after the reduction. Default is 2. Range is between 1 and 20.

attack

Amount of milliseconds the signal has to rise above the threshold before gain reduction starts.
Default is 20. Range is between 0.01 and 2000.

release

Amount of milliseconds the signal has to fall below the threshold before reduction is decreased again.
Default is 250. Range is between 0.01 and 9000.

makeup

Set the amount by how much signal will be amplified after processing. Default is 1. Range is from 1
to 64.

knee

Curve the sharp knee around the threshold to enter gain reduction more softly. Default is 2.82843.
Range is between 1 and 8.

link

Choose if the average level between all channels of input stream or the louder(maximum) channel
of input stream affects the reduction. Default is average.

detection

Should the exact signal be taken in case of peak or an RMS one in case of rms. Default is rms
which is mostly smoother.

mix

How much to use compressed signal in output. Default is 1. Range is between 0 and 1.

35.2 acontrast# TOC

Simple audio dynamic range commpression/expansion filter.

The filter accepts the following options:

contrast

Set contrast. Default is 33. Allowed range is between 0 and 100.

35.3 acopy# TOC

Copy the input audio source unchanged to the output. This is mainly useful for testing purposes.

35.4 acrossfade# TOC

Apply cross fade from one input audio stream to another input audio stream. The cross fade is applied for
specified duration near the end of first stream.

The filter accepts the following options:

nb_samples, ns

Specify the number of samples for which the cross fade effect has to last. At the end of the cross fade
effect the first input audio will be completely silent. Default is 44100.

duration, d

Specify the duration of the cross fade effect. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax. By default the duration is determined by nb_samples.
If set this option is used instead of nb_samples.

overlap, o

Should first stream end overlap with second stream start. Default is enabled.

curve1

Set curve for cross fade transition for first stream.

curve2

Set curve for cross fade transition for second stream.

For description of available curve types see afade filter description.

35.4.1 Examples# TOC

Cross fade from one input to another:

ffmpeg -i first.flac -i second.flac -filter_complex acrossfade=d=10:c1=exp:c2=exp output.flac

Cross fade from one input to another but without overlapping:

ffmpeg -i first.flac -i second.flac -filter_complex acrossfade=d=10:o=0:c1=exp:c2=exp output.flac

35.5 acrusher# TOC

Reduce audio bit resolution.

This filter is bit crusher with enhanced functionality. A bit crusher is used to audibly reduce number of bits
an audio signal is sampled with. This doesn’t change the bit depth at all, it just produces the effect.
Material reduced in bit depth sounds more harsh and "digital". This filter is able to even round to
continuous values instead of discrete bit depths. Additionally it has a D/C offset which results in different
crushing of the lower and the upper half of the signal. An Anti-Aliasing setting is able to produce "softer"
crushing sounds.

Another feature of this filter is the logarithmic mode. This setting switches from linear distances between
bits to logarithmic ones. The result is a much more "natural" sounding crusher which doesn’t gate low
signals for example. The human ear has a logarithmic perception, too so this kind of crushing is much
more pleasant. Logarithmic crushing is also able to get anti-aliased.

The filter accepts the following options:

level_in

Set level in.

level_out

Set level out.

bits

Set bit reduction.

mix

Set mixing amount.

mode

Can be linear: lin or logarithmic: log.

dc

Set DC.

aa

Set anti-aliasing.

samples

Set sample reduction.

lfo

Enable LFO. By default disabled.

lforange

Set LFO range.

lforate

Set LFO rate.

35.6 adelay# TOC

Delay one or more audio channels.

Samples in delayed channel are filled with silence.

The filter accepts the following option:

delays

Set list of delays in milliseconds for each channel separated by ’|’. Unused delays will be silently
ignored. If number of given delays is smaller than number of channels all remaining channels will not
be delayed. If you want to delay exact number of samples, append ’S’ to number.

35.6.1 Examples# TOC

Delay first channel by 1.5 seconds, the third channel by 0.5 seconds and leave the second channel
(and any other channels that may be present) unchanged.

adelay=1500|0|500

Delay second channel by 500 samples, the third channel by 700 samples and leave the first channel
(and any other channels that may be present) unchanged.

adelay=0|500S|700S

35.7 aecho# TOC

Apply echoing to the input audio.

Echoes are reflected sound and can occur naturally amongst mountains (and sometimes large buildings)
when talking or shouting; digital echo effects emulate this behaviour and are often used to help fill out the
sound of a single instrument or vocal. The time difference between the original signal and the reflection is
the delay, and the loudness of the reflected signal is the decay. Multiple echoes can have different

delays and decays.

A description of the accepted parameters follows.

in_gain

Set input gain of reflected signal. Default is 0.6.

out_gain

Set output gain of reflected signal. Default is 0.3.

delays

Set list of time intervals in milliseconds between original signal and reflections separated by ’|’.
Allowed range for each delay is (0 - 90000.0]. Default is 1000.

decays

Set list of loudness of reflected signals separated by ’|’. Allowed range for each decay is (0 -
1.0]. Default is 0.5.

35.7.1 Examples# TOC

Make it sound as if there are twice as many instruments as are actually playing:

aecho=0.8:0.88:60:0.4

If delay is very short, then it sound like a (metallic) robot playing music:

aecho=0.8:0.88:6:0.4

A longer delay will sound like an open air concert in the mountains:

aecho=0.8:0.9:1000:0.3

Same as above but with one more mountain:

aecho=0.8:0.9:1000|1800:0.3|0.25

35.8 aemphasis# TOC

Audio emphasis filter creates or restores material directly taken from LPs or emphased CDs with different
filter curves. E.g. to store music on vinyl the signal has to be altered by a filter first to even out the
disadvantages of this recording medium. Once the material is played back the inverse filter has to be
applied to restore the distortion of the frequency response.

The filter accepts the following options:

level_in

Set input gain.

level_out

Set output gain.

mode

Set filter mode. For restoring material use reproduction mode, otherwise use production
mode. Default is reproduction mode.

type

Set filter type. Selects medium. Can be one of the following:

col

select Columbia.

emi

select EMI.

bsi

select BSI (78RPM).

riaa

select RIAA.

cd

select Compact Disc (CD).

50fm

select 50Âµs (FM).

75fm

select 75Âµs (FM).

50kf

select 50Âµs (FM-KF).

75kf

select 75Âµs (FM-KF).

35.9 aeval# TOC

Modify an audio signal according to the specified expressions.

This filter accepts one or more expressions (one for each channel), which are evaluated and used to
modify a corresponding audio signal.

It accepts the following parameters:

exprs

Set the ’|’-separated expressions list for each separate channel. If the number of input channels is
greater than the number of expressions, the last specified expression is used for the remaining output
channels.

channel_layout, c

Set output channel layout. If not specified, the channel layout is specified by the number of
expressions. If set to ‘same’, it will use by default the same input channel layout.

Each expression in exprs can contain the following constants and functions:

ch

channel number of the current expression

n

number of the evaluated sample, starting from 0

s

sample rate

t

time of the evaluated sample expressed in seconds

nb_in_channels
nb_out_channels

input and output number of channels

val(CH)

the value of input channel with number CH

Note: this filter is slow. For faster processing you should use a dedicated filter.

35.9.1 Examples# TOC

Half volume:

aeval=val(ch)/2:c=same

Invert phase of the second channel:

aeval=val(0)|-val(1)

35.10 afade# TOC

Apply fade-in/out effect to input audio.

A description of the accepted parameters follows.

type, t

Specify the effect type, can be either in for fade-in, or out for a fade-out effect. Default is in.

start_sample, ss

Specify the number of the start sample for starting to apply the fade effect. Default is 0.

nb_samples, ns

Specify the number of samples for which the fade effect has to last. At the end of the fade-in effect
the output audio will have the same volume as the input audio, at the end of the fade-out transition
the output audio will be silence. Default is 44100.

start_time, st

Specify the start time of the fade effect. Default is 0. The value must be specified as a time duration;
see (ffmpeg-utils)the Time duration section in the ffmpeg-utils(1) manual for the accepted syntax. If
set this option is used instead of start_sample.

duration, d

Specify the duration of the fade effect. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax. At the end of the fade-in effect the output audio will
have the same volume as the input audio, at the end of the fade-out transition the output audio will be
silence. By default the duration is determined by nb_samples. If set this option is used instead of
nb_samples.

curve

Set curve for fade transition.

It accepts the following values:

tri

select triangular, linear slope (default)

qsin

select quarter of sine wave

hsin

select half of sine wave

esin

select exponential sine wave

log

select logarithmic

ipar

select inverted parabola

qua

select quadratic

cub

select cubic

squ

select square root

cbr

select cubic root

par

select parabola

exp

select exponential

iqsin

select inverted quarter of sine wave

ihsin

select inverted half of sine wave

dese

select double-exponential seat

desi

select double-exponential sigmoid

35.10.1 Examples# TOC

Fade in first 15 seconds of audio:

afade=t=in:ss=0:d=15

Fade out last 25 seconds of a 900 seconds audio:

afade=t=out:st=875:d=25

35.11 afftfilt# TOC

Apply arbitrary expressions to samples in frequency domain.

real

Set frequency domain real expression for each separate channel separated by ’|’. Default is "1". If the
number of input channels is greater than the number of expressions, the last specified expression is
used for the remaining output channels.

imag

Set frequency domain imaginary expression for each separate channel separated by ’|’. If not set, real

option is used.

Each expression in real and imag can contain the following constants:

sr

sample rate

b

current frequency bin number

nb

number of available bins

ch

channel number of the current expression

chs

number of channels

pts

current frame pts

win_size

Set window size.

It accepts the following values:

‘w16’
‘w32’
‘w64’
‘w128’
‘w256’
‘w512’
‘w1024’
‘w2048’
‘w4096’
‘w8192’
‘w16384’
‘w32768’
‘w65536’

Default is w4096

win_func

Set window function. Default is hann.

overlap

Set window overlap. If set to 1, the recommended overlap for selected window function will be
picked. Default is 0.75.

35.11.1 Examples# TOC

Leave almost only low frequencies in audio:

afftfilt="1-clip((b/nb)*b,0,1)"

35.12 afir# TOC

Apply an arbitrary Frequency Impulse Response filter.

This filter is designed for applying long FIR filters, up to 30 seconds long.

It can be used as component for digital crossover filters, room equalization, cross talk cancellation,
wavefield synthesis, auralization, ambiophonics and ambisonics.

This filter uses second stream as FIR coefficients. If second stream holds single channel, it will be used for
all input channels in first stream, otherwise number of channels in second stream must be same as number
of channels in first stream.

It accepts the following parameters:

dry

Set dry gain. This sets input gain.

wet

Set wet gain. This sets final output gain.

length

Set Impulse Response filter length. Default is 1, which means whole IR is processed.

again

Enable applying gain measured from power of IR.

35.12.1 Examples# TOC

Apply reverb to stream using mono IR file as second input, complete command using ffmpeg:

ffmpeg -i input.wav -i middle_tunnel_1way_mono.wav -lavfi afir output.wav

35.13 aformat# TOC

Set output format constraints for the input audio. The framework will negotiate the most appropriate
format to minimize conversions.

It accepts the following parameters:

sample_fmts

A ’|’-separated list of requested sample formats.

sample_rates

A ’|’-separated list of requested sample rates.

channel_layouts

A ’|’-separated list of requested channel layouts.

See (ffmpeg-utils)the Channel Layout section in the ffmpeg-utils(1) manual for the required syntax.

If a parameter is omitted, all values are allowed.

Force the output to either unsigned 8-bit or signed 16-bit stereo

aformat=sample_fmts=u8|s16:channel_layouts=stereo

35.14 agate# TOC

A gate is mainly used to reduce lower parts of a signal. This kind of signal processing reduces disturbing
noise between useful signals.

Gating is done by detecting the volume below a chosen level threshold and dividing it by the factor set
with ratio. The bottom of the noise floor is set via range. Because an exact manipulation of the signal
would cause distortion of the waveform the reduction can be levelled over time. This is done by setting
attack and release.

attack determines how long the signal has to fall below the threshold before any reduction will occur and
release sets the time the signal has to rise above the threshold to reduce the reduction again. Shorter
signals than the chosen attack time will be left untouched.

level_in

Set input level before filtering. Default is 1. Allowed range is from 0.015625 to 64.

range

Set the level of gain reduction when the signal is below the threshold. Default is 0.06125. Allowed
range is from 0 to 1.

threshold

If a signal rises above this level the gain reduction is released. Default is 0.125. Allowed range is
from 0 to 1.

ratio

Set a ratio by which the signal is reduced. Default is 2. Allowed range is from 1 to 9000.

attack

Amount of milliseconds the signal has to rise above the threshold before gain reduction stops. Default
is 20 milliseconds. Allowed range is from 0.01 to 9000.

release

Amount of milliseconds the signal has to fall below the threshold before the reduction is increased
again. Default is 250 milliseconds. Allowed range is from 0.01 to 9000.

makeup

Set amount of amplification of signal after processing. Default is 1. Allowed range is from 1 to 64.

knee

Curve the sharp knee around the threshold to enter gain reduction more softly. Default is
2.828427125. Allowed range is from 1 to 8.

detection

Choose if exact signal should be taken for detection or an RMS like one. Default is rms. Can be
peak or rms.

link

Choose if the average level between all channels or the louder channel affects the reduction. Default
is average. Can be average or maximum.

35.15 alimiter# TOC

The limiter prevents an input signal from rising over a desired threshold. This limiter uses lookahead
technology to prevent your signal from distorting. It means that there is a small delay after the signal is
processed. Keep in mind that the delay it produces is the attack time you set.

The filter accepts the following options:

level_in

Set input gain. Default is 1.

level_out

Set output gain. Default is 1.

limit

Don’t let signals above this level pass the limiter. Default is 1.

attack

The limiter will reach its attenuation level in this amount of time in milliseconds. Default is 5
milliseconds.

release

Come back from limiting to attenuation 1.0 in this amount of milliseconds. Default is 50
milliseconds.

asc

When gain reduction is always needed ASC takes care of releasing to an average reduction level
rather than reaching a reduction of 0 in the release time.

asc_level

Select how much the release time is affected by ASC, 0 means nearly no changes in release time
while 1 produces higher release times.

level

Auto level output signal. Default is enabled. This normalizes audio back to 0dB if enabled.

Depending on picked setting it is recommended to upsample input 2x or 4x times with aresample before
applying this filter.

35.16 allpass# TOC

Apply a two-pole all-pass filter with central frequency (in Hz) frequency, and filter-width width. An
all-pass filter changes the audio’s frequency to phase relationship without changing its frequency to
amplitude relationship.

The filter accepts the following options:

frequency, f

Set frequency in Hz.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

width, w

Specify the band-width of a filter in width_type units.

channels, c

Specify which channels to filter, by default all available are filtered.

35.17 aloop# TOC

Loop audio samples.

The filter accepts the following options:

loop

Set the number of loops. Setting this value to -1 will result in infinite loops. Default is 0.

size

Set maximal number of samples. Default is 0.

start

Set first sample of loop. Default is 0.

35.18 amerge# TOC

Merge two or more audio streams into a single multi-channel stream.

The filter accepts the following options:

inputs

Set the number of inputs. Default is 2.

If the channel layouts of the inputs are disjoint, and therefore compatible, the channel layout of the output
will be set accordingly and the channels will be reordered as necessary. If the channel layouts of the inputs
are not disjoint, the output will have all the channels of the first input then all the channels of the second
input, in that order, and the channel layout of the output will be the default value corresponding to the total
number of channels.

For example, if the first input is in 2.1 (FL+FR+LF) and the second input is FC+BL+BR, then the output
will be in 5.1, with the channels in the following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
first input, b1 is the first channel of the second input).

On the other hand, if both input are in stereo, the output channels will be in the default order: a1, a2, b1,
b2, and the channel layout will be arbitrarily set to 4.0, which may or may not be the expected value.

All inputs must have the same sample rate, and format.

If inputs do not have the same duration, the output will stop with the shortest.

35.18.1 Examples# TOC

Merge two mono files into a stereo stream:

amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge

Multiple merges assuming 1 video stream and 6 audio streams in input.mkv:

ffmpeg -i input.mkv -filter_complex "[0:1][0:2][0:3][0:4][0:5][0:6] amerge=inputs=6" -c:a pcm_s16le output.mkv

35.19 amix# TOC

Mixes multiple audio inputs into a single output.

Note that this filter only supports float samples (the amerge and pan audio filters support many formats).
If the amix input has integer samples then aresample will be automatically inserted to perform the
conversion to float samples.

For example

ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT

will mix 3 input audio streams to a single output with the same duration as the first input and a dropout
transition time of 3 seconds.

It accepts the following parameters:

inputs

The number of inputs. If unspecified, it defaults to 2.

duration

How to determine the end-of-stream.

longest

The duration of the longest input. (default)

shortest

The duration of the shortest input.

first

The duration of the first input.

dropout_transition

The transition time, in seconds, for volume renormalization when an input stream ends. The default
value is 2 seconds.

35.20 anequalizer# TOC

High-order parametric multiband equalizer for each channel.

It accepts the following parameters:

params

This option string is in format: "cchn f=cf w=w g=g t=f | ..." Each equalizer band is separated by ’|’.

chn

Set channel number to which equalization will be applied. If input doesn’t have that channel the
entry is ignored.

f

Set central frequency for band. If input doesn’t have that frequency the entry is ignored.

w

Set band width in hertz.

g

Set band gain in dB.

t

Set filter type for band, optional, can be:

‘0’

Butterworth, this is default.

‘1’

Chebyshev type 1.

‘2’

Chebyshev type 2.

curves

With this option activated frequency response of anequalizer is displayed in video stream.

size

Set video stream size. Only useful if curves option is activated.

mgain

Set max gain that will be displayed. Only useful if curves option is activated. Setting this to a
reasonable value makes it possible to display gain which is derived from neighbour bands which are
too close to each other and thus produce higher gain when both are activated.

fscale

Set frequency scale used to draw frequency response in video output. Can be linear or logarithmic.
Default is logarithmic.

colors

Set color for each channel curve which is going to be displayed in video stream. This is list of color
names separated by space or by ’|’. Unrecognised or missing colors will be replaced by white color.

35.20.1 Examples# TOC

Lower gain by 10 of central frequency 200Hz and width 100 Hz for first 2 channels using Chebyshev
type 1 filter:

anequalizer=c0 f=200 w=100 g=-10 t=1|c1 f=200 w=100 g=-10 t=1

35.20.2 Commands# TOC

This filter supports the following commands:

change

Alter existing filter parameters. Syntax for the commands is : "fN|f=freq|w=width|g=gain"

fN is existing filter number, starting from 0, if no such filter is available error is returned. freq set new
frequency parameter. width set new width parameter in herz. gain set new gain parameter in dB.

Full filter invocation with asendcmd may look like this: asendcmd=c=’4.0 anequalizer change
0|f=200|w=50|g=1’,anequalizer=...

35.21 anull# TOC

Pass the audio source unchanged to the output.

35.22 apad# TOC

Pad the end of an audio stream with silence.

This can be used together with ffmpeg -shortest to extend audio streams to the same length as the
video stream.

A description of the accepted options follows.

packet_size

Set silence packet size. Default value is 4096.

pad_len

Set the number of samples of silence to add to the end. After the value is reached, the stream is
terminated. This option is mutually exclusive with whole_len.

whole_len

Set the minimum total number of samples in the output audio stream. If the value is longer than the
input audio length, silence is added to the end, until the value is reached. This option is mutually exclusive
with pad_len.

If neither the pad_len nor the whole_len option is set, the filter will add silence to the end of the
input stream indefinitely.

35.22.1 Examples# TOC

Add 1024 samples of silence to the end of the input:

apad=pad_len=1024

Make sure the audio output will contain at least 10000 samples, pad the input with silence if required:

apad=whole_len=10000

Use ffmpeg to pad the audio input with silence, so that the video stream will always result the
shortest and will be converted until the end in the output file when using the shortest option:

ffmpeg -i VIDEO -i AUDIO -filter_complex "[1:0]apad" -shortest OUTPUT

35.23 aphaser# TOC

Add a phasing effect to the input audio.

A phaser filter creates series of peaks and troughs in the frequency spectrum. The position of the peaks
and troughs are modulated so that they vary over time, creating a sweeping effect.

A description of the accepted parameters follows.

in_gain

Set input gain. Default is 0.4.

out_gain

Set output gain. Default is 0.74

delay

Set delay in milliseconds. Default is 3.0.

decay

Set decay. Default is 0.4.

speed

Set modulation speed in Hz. Default is 0.5.

type

Set modulation type. Default is triangular.

It accepts the following values:

‘triangular, t’
‘sinusoidal, s’

35.24 apulsator# TOC

Audio pulsator is something between an autopanner and a tremolo. But it can produce funny stereo effects
as well. Pulsator changes the volume of the left and right channel based on a LFO (low frequency
oscillator) with different waveforms and shifted phases. This filter have the ability to define an offset
between left and right channel. An offset of 0 means that both LFO shapes match each other. The left and
right channel are altered equally - a conventional tremolo. An offset of 50% means that the shape of the
right channel is exactly shifted in phase (or moved backwards about half of the frequency) - pulsator acts
as an autopanner. At 1 both curves match again. Every setting in between moves the phase shift gapless
between all stages and produces some "bypassing" sounds with sine and triangle waveforms. The more
you set the offset near 1 (starting from the 0.5) the faster the signal passes from the left to the right
speaker.

The filter accepts the following options:

level_in

Set input gain. By default it is 1. Range is [0.015625 - 64].

level_out

Set output gain. By default it is 1. Range is [0.015625 - 64].

mode

Set waveform shape the LFO will use. Can be one of: sine, triangle, square, sawup or sawdown.
Default is sine.

amount

Set modulation. Define how much of original signal is affected by the LFO.

offset_l

Set left channel offset. Default is 0. Allowed range is [0 - 1].

offset_r

Set right channel offset. Default is 0.5. Allowed range is [0 - 1].

width

Set pulse width. Default is 1. Allowed range is [0 - 2].

timing

Set possible timing mode. Can be one of: bpm, ms or hz. Default is hz.

bpm

Set bpm. Default is 120. Allowed range is [30 - 300]. Only used if timing is set to bpm.

ms

Set ms. Default is 500. Allowed range is [10 - 2000]. Only used if timing is set to ms.

hz

Set frequency in Hz. Default is 2. Allowed range is [0.01 - 100]. Only used if timing is set to hz.

35.25 aresample# TOC

Resample the input audio to the specified parameters, using the libswresample library. If none are
specified then the filter will automatically convert between its input and output.

This filter is also able to stretch/squeeze the audio data to make it match the timestamps or to inject silence
/ cut out audio to make it match the timestamps, do a combination of both or do neither.

The filter accepts the syntax [sample_rate:]resampler_options, where sample_rate expresses a sample rate
and resampler_options is a list of key=value pairs, separated by ":". See the (ffmpeg-resampler)the
"Resampler Options" section in the ffmpeg-resampler(1) manual for the complete list of supported
options.

35.25.1 Examples# TOC

Resample the input audio to 44100Hz:

aresample=44100

Stretch/squeeze samples to the given timestamps, with a maximum of 1000 samples per second
compensation:

aresample=async=1000

35.26 areverse# TOC

Reverse an audio clip.

Warning: This filter requires memory to buffer the entire clip, so trimming is suggested.

35.26.1 Examples# TOC

Take the first 5 seconds of a clip, and reverse it.

atrim=end=5,areverse

35.27 asetnsamples# TOC

Set the number of samples per each output audio frame.

The last output packet may contain a different number of samples, as the filter will flush all the remaining
samples when the input audio signals its end.

The filter accepts the following options:

nb_out_samples, n

Set the number of frames per each output audio frame. The number is intended as the number of
samples per each channel. Default value is 1024.

pad, p

If set to 1, the filter will pad the last audio frame with zeroes, so that the last frame will contain the
same number of samples as the previous ones. Default value is 1.

For example, to set the number of per-frame samples to 1234 and disable padding for the last frame, use:

asetnsamples=n=1234:p=0

35.28 asetrate# TOC

Set the sample rate without altering the PCM data. This will result in a change of speed and pitch.

The filter accepts the following options:

sample_rate, r

Set the output sample rate. Default is 44100 Hz.

35.29 ashowinfo# TOC

Show a line containing various information for each input audio frame. The input audio is not modified.

The shown line contains a sequence of key/value pairs of the form key:value.

The following values are shown in the output:

n

The (sequential) number of the input frame, starting from 0.

pts

The presentation timestamp of the input frame, in time base units; the time base depends on the filter
input pad, and is usually 1/sample_rate.

pts_time

The presentation timestamp of the input frame in seconds.

pos

position of the frame in the input stream, -1 if this information in unavailable and/or meaningless (for
example in case of synthetic audio)

fmt

The sample format.

chlayout

The channel layout.

rate

The sample rate for the audio frame.

nb_samples

The number of samples (per channel) in the frame.

checksum

The Adler-32 checksum (printed in hexadecimal) of the audio data. For planar audio, the data is
treated as if all the planes were concatenated.

plane_checksums

A list of Adler-32 checksums for each data plane.

35.30 astats# TOC

Display time domain statistical information about the audio channels. Statistics are calculated and
displayed for each audio channel and, where applicable, an overall figure is also given.

It accepts the following option:

length

Short window length in seconds, used for peak and trough RMS measurement. Default is 0.05 (50
milliseconds). Allowed range is [0.1 - 10].

metadata

Set metadata injection. All the metadata keys are prefixed with lavfi.astats.X, where X is
channel number starting from 1 or string Overall. Default is disabled.

Available keys for each channel are: DC_offset Min_level Max_level Min_difference
Max_difference Mean_difference RMS_difference Peak_level RMS_peak RMS_trough Crest_factor
Flat_factor Peak_count Bit_depth Dynamic_range

and for Overall: DC_offset Min_level Max_level Min_difference Max_difference Mean_difference
RMS_difference Peak_level RMS_level RMS_peak RMS_trough Flat_factor Peak_count Bit_depth
Number_of_samples

For example full key look like this lavfi.astats.1.DC_offset or this
lavfi.astats.Overall.Peak_count.

For description what each key means read below.

reset

Set number of frame after which stats are going to be recalculated. Default is disabled.

A description of each shown parameter follows:

DC offset

Mean amplitude displacement from zero.

Min level

Minimal sample level.

Max level

Maximal sample level.

Min difference

Minimal difference between two consecutive samples.

Max difference

Maximal difference between two consecutive samples.

Mean difference

Mean difference between two consecutive samples. The average of each difference between two
consecutive samples.

RMS difference

Root Mean Square difference between two consecutive samples.

Peak level dB
RMS level dB

Standard peak and RMS level measured in dBFS.

RMS peak dB
RMS trough dB

Peak and trough values for RMS level measured over a short window.

Crest factor

Standard ratio of peak to RMS level (note: not in dB).

Flat factor

Flatness (i.e. consecutive samples with the same value) of the signal at its peak levels (i.e. either Min

level or Max level).

Peak count

Number of occasions (not the number of samples) that the signal attained either Min level or Max

level.

Bit depth

Overall bit depth of audio. Number of bits used for each sample.

Dynamic range

Measured dynamic range of audio in dB.

35.31 atempo# TOC

Adjust audio tempo.

The filter accepts exactly one parameter, the audio tempo. If not specified then the filter will assume
nominal 1.0 tempo. Tempo must be in the [0.5, 2.0] range.

35.31.1 Examples# TOC

Slow down audio to 80% tempo:

atempo=0.8

To speed up audio to 125% tempo:

atempo=1.25

35.32 atrim# TOC

Trim the input so that the output contains one continuous subpart of the input.

It accepts the following parameters:

start

Timestamp (in seconds) of the start of the section to keep. I.e. the audio sample with the timestamp
start will be the first sample in the output.

end

Specify time of the first audio sample that will be dropped, i.e. the audio sample immediately
preceding the one with the timestamp end will be the last sample in the output.

start_pts

Same as start, except this option sets the start timestamp in samples instead of seconds.

end_pts

Same as end, except this option sets the end timestamp in samples instead of seconds.

duration

The maximum duration of the output in seconds.

start_sample

The number of the first sample that should be output.

end_sample

The number of the first sample that should be dropped.

start, end, and duration are expressed as time duration specifications; see (ffmpeg-utils)the Time
duration section in the ffmpeg-utils(1) manual.

Note that the first two sets of the start/end options and the duration option look at the frame timestamp,
while the _sample options simply count the samples that pass through the filter. So start/end_pts and
start/end_sample will give different results when the timestamps are wrong, inexact or do not start at zero.
Also note that this filter does not modify the timestamps. If you wish to have the output timestamps start at
zero, insert the asetpts filter after the atrim filter.

If multiple start or end options are set, this filter tries to be greedy and keep all samples that match at least
one of the specified constraints. To keep only the part that matches all the constraints at once, chain
multiple atrim filters.

The defaults are such that all the input is kept. So it is possible to set e.g. just the end values to keep
everything before the specified time.

Examples:

Drop everything except the second minute of input:

ffmpeg -i INPUT -af atrim=60:120

Keep only the first 1000 samples:

ffmpeg -i INPUT -af atrim=end_sample=1000

35.33 bandpass# TOC

Apply a two-pole Butterworth band-pass filter with central frequency frequency, and (3dB-point)
band-width width. The csg option selects a constant skirt gain (peak gain = Q) instead of the default:
constant 0dB peak gain. The filter roll off at 6dB per octave (20dB per decade).

The filter accepts the following options:

frequency, f

Set the filter’s central frequency. Default is 3000.

csg

Constant skirt gain if set to 1. Defaults to 0.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

width, w

Specify the band-width of a filter in width_type units.

channels, c

Specify which channels to filter, by default all available are filtered.

35.34 bandreject# TOC

Apply a two-pole Butterworth band-reject filter with central frequency frequency, and (3dB-point)
band-width width. The filter roll off at 6dB per octave (20dB per decade).

The filter accepts the following options:

frequency, f

Set the filter’s central frequency. Default is 3000.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

width, w

Specify the band-width of a filter in width_type units.

channels, c

Specify which channels to filter, by default all available are filtered.

35.35 bass# TOC

Boost or cut the bass (lower) frequencies of the audio using a two-pole shelving filter with a response
similar to that of a standard hi-fi’s tone-controls. This is also known as shelving equalisation (EQ).

The filter accepts the following options:

gain, g

Give the gain at 0 Hz. Its useful range is about -20 (for a large cut) to +20 (for a large boost). Beware
of clipping when using a positive gain.

frequency, f

Set the filter’s central frequency and so can be used to extend or reduce the frequency range to be
boosted or cut. The default value is 100 Hz.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

width, w

Determine how steep is the filter’s shelf transition.

channels, c

Specify which channels to filter, by default all available are filtered.

35.36 biquad# TOC

Apply a biquad IIR filter with the given coefficients. Where b0, b1, b2 and a0, a1, a2 are the numerator
and denominator coefficients respectively. and channels, c specify which channels to filter, by default all
available are filtered.

35.37 bs2b# TOC

Bauer stereo to binaural transformation, which improves headphone listening of stereo audio records.

To enable compilation of this filter you need to configure FFmpeg with --enable-libbs2b.

It accepts the following parameters:

profile

Pre-defined crossfeed level.

default

Default level (fcut=700, feed=50).

cmoy

Chu Moy circuit (fcut=700, feed=60).

jmeier

Jan Meier circuit (fcut=650, feed=95).

fcut

Cut frequency (in Hz).

feed

Feed level (in Hz).

35.38 channelmap# TOC

Remap input channels to new locations.

It accepts the following parameters:

map

Map channels from input to output. The argument is a ’|’-separated list of mappings, each in the
in_channel-out_channel or in_channel form. in_channel can be either the name of the input
channel (e.g. FL for front left) or its index in the input channel layout. out_channel is the name of the
output channel or its index in the output channel layout. If out_channel is not given then it is
implicitly an index, starting with zero and increasing by one for each mapping.

channel_layout

The channel layout of the output stream.

If no mapping is present, the filter will implicitly map input channels to output channels, preserving
indices.

For example, assuming a 5.1+downmix input MOV file,

ffmpeg -i in.mov -filter ’channelmap=map=DL-FL|DR-FR’ out.wav

will create an output WAV file tagged as stereo from the downmix channels of the input.

To fix a 5.1 WAV improperly encoded in AAC’s native channel order

ffmpeg -i in.wav -filter ’channelmap=1|2|0|5|3|4:5.1’ out.wav

35.39 channelsplit# TOC

Split each channel from an input audio stream into a separate output stream.

It accepts the following parameters:

channel_layout

The channel layout of the input stream. The default is "stereo".

For example, assuming a stereo input MP3 file,

ffmpeg -i in.mp3 -filter_complex channelsplit out.mkv

will create an output Matroska file with two audio streams, one containing only the left channel and the
other the right channel.

Split a 5.1 WAV file into per-channel files:

ffmpeg -i in.wav -filter_complex
’channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]’
-map ’[FL]’ front_left.wav -map ’[FR]’ front_right.wav -map ’[FC]’
front_center.wav -map ’[LFE]’ lfe.wav -map ’[SL]’ side_left.wav -map ’[SR]’
side_right.wav

35.40 chorus# TOC

Add a chorus effect to the audio.

Can make a single vocal sound like a chorus, but can also be applied to instrumentation.

Chorus resembles an echo effect with a short delay, but whereas with echo the delay is constant, with
chorus, it is varied using using sinusoidal or triangular modulation. The modulation depth defines the
range the modulated delay is played before or after the delay. Hence the delayed sound will sound slower
or faster, that is the delayed sound tuned around the original one, like in a chorus where some vocals are
slightly off key.

It accepts the following parameters:

in_gain

Set input gain. Default is 0.4.

out_gain

Set output gain. Default is 0.4.

delays

Set delays. A typical delay is around 40ms to 60ms.

decays

Set decays.

speeds

Set speeds.

depths

Set depths.

35.40.1 Examples# TOC

A single delay:

chorus=0.7:0.9:55:0.4:0.25:2

Two delays:

chorus=0.6:0.9:50|60:0.4|0.32:0.25|0.4:2|1.3

Fuller sounding chorus with three delays:

chorus=0.5:0.9:50|60|40:0.4|0.32|0.3:0.25|0.4|0.3:2|2.3|1.3

35.41 compand# TOC

Compress or expand the audio’s dynamic range.

It accepts the following parameters:

attacks
decays

A list of times in seconds for each channel over which the instantaneous level of the input signal is
averaged to determine its volume. attacks refers to increase of volume and decays refers to decrease
of volume. For most situations, the attack time (response to the audio getting louder) should be
shorter than the decay time, because the human ear is more sensitive to sudden loud audio than
sudden soft audio. A typical value for attack is 0.3 seconds and a typical value for decay is 0.8
seconds. If specified number of attacks & decays is lower than number of channels, the last set
attack/decay will be used for all remaining channels.

points

A list of points for the transfer function, specified in dB relative to the maximum possible signal
amplitude. Each key points list must be defined using the following syntax:
x0/y0|x1/y1|x2/y2|.... or x0/y0 x1/y1 x2/y2

The input values must be in strictly increasing order but the transfer function does not have to be
monotonically rising. The point 0/0 is assumed but may be overridden (by 0/out-dBn). Typical
values for the transfer function are -70/-70|-60/-20|1/0.

soft-knee

Set the curve radius in dB for all joints. It defaults to 0.01.

gain

Set the additional gain in dB to be applied at all points on the transfer function. This allows for easy
adjustment of the overall gain. It defaults to 0.

volume

Set an initial volume, in dB, to be assumed for each channel when filtering starts. This permits the
user to supply a nominal level initially, so that, for example, a very large gain is not applied to initial
signal levels before the companding has begun to operate. A typical value for audio which is initially
quiet is -90 dB. It defaults to 0.

delay

Set a delay, in seconds. The input audio is analyzed immediately, but audio is delayed before being
fed to the volume adjuster. Specifying a delay approximately equal to the attack/decay times allows
the filter to effectively operate in predictive rather than reactive mode. It defaults to 0.

35.41.1 Examples# TOC

Make music with both quiet and loud passages suitable for listening to in a noisy environment:

compand=.3|.3:1|1:-90/-60|-60/-40|-40/-30|-20/-20:6:0:-90:0.2

Another example for audio with whisper and explosion parts:

compand=0|0:1|1:-90/-900|-70/-70|-30/-9|0/-3:6:0:0:0

A noise gate for when the noise is at a lower level than the signal:

compand=.1|.1:.2|.2:-900/-900|-50.1/-900|-50/-50:.01:0:-90:.1

Here is another noise gate, this time for when the noise is at a higher level than the signal (making it,
in some ways, similar to squelch):

compand=.1|.1:.1|.1:-45.1/-45.1|-45/-900|0/-900:.01:45:-90:.1

2:1 compression starting at -6dB:

compand=points=-80/-80|-6/-6|0/-3.8|20/3.5

2:1 compression starting at -9dB:

compand=points=-80/-80|-9/-9|0/-5.3|20/2.9

2:1 compression starting at -12dB:

compand=points=-80/-80|-12/-12|0/-6.8|20/1.9

2:1 compression starting at -18dB:

compand=points=-80/-80|-18/-18|0/-9.8|20/0.7

3:1 compression starting at -15dB:

compand=points=-80/-80|-15/-15|0/-10.8|20/-5.2

Compressor/Gate:

compand=points=-80/-105|-62/-80|-15.4/-15.4|0/-12|20/-7.6

Expander:

compand=attacks=0:points=-80/-169|-54/-80|-49.5/-64.6|-41.1/-41.1|-25.8/-15|-10.8/-4.5|0/0|20/8.3

Hard limiter at -6dB:

compand=attacks=0:points=-80/-80|-6/-6|20/-6

Hard limiter at -12dB:

compand=attacks=0:points=-80/-80|-12/-12|20/-12

Hard noise gate at -35 dB:

compand=attacks=0:points=-80/-115|-35.1/-80|-35/-35|20/20

Soft limiter:

compand=attacks=0:points=-80/-80|-12.4/-12.4|-6/-8|0/-6.8|20/-2.8

35.42 compensationdelay# TOC

Compensation Delay Line is a metric based delay to compensate differing positions of microphones or
speakers.

For example, you have recorded guitar with two microphones placed in different location. Because the
front of sound wave has fixed speed in normal conditions, the phasing of microphones can vary and
depends on their location and interposition. The best sound mix can be achieved when these microphones
are in phase (synchronized). Note that distance of ~30 cm between microphones makes one microphone to
capture signal in antiphase to another microphone. That makes the final mix sounding moody. This filter
helps to solve phasing problems by adding different delays to each microphone track and make them
synchronized.

The best result can be reached when you take one track as base and synchronize other tracks one by one
with it. Remember that synchronization/delay tolerance depends on sample rate, too. Higher sample rates
will give more tolerance.

It accepts the following parameters:

mm

Set millimeters distance. This is compensation distance for fine tuning. Default is 0.

cm

Set cm distance. This is compensation distance for tightening distance setup. Default is 0.

m

Set meters distance. This is compensation distance for hard distance setup. Default is 0.

dry

Set dry amount. Amount of unprocessed (dry) signal. Default is 0.

wet

Set wet amount. Amount of processed (wet) signal. Default is 1.

temp

Set temperature degree in Celsius. This is the temperature of the environment. Default is 20.

35.43 crossfeed# TOC

Apply headphone crossfeed filter.

Crossfeed is the process of blending the left and right channels of stereo audio recording. It is mainly used
to reduce extreme stereo separation of low frequencies.

The intent is to produce more speaker like sound to the listener.

The filter accepts the following options:

strength

Set strength of crossfeed. Default is 0.2. Allowed range is from 0 to 1. This sets gain of low shelf
filter for side part of stereo image. Default is -6dB. Max allowed is -30db when strength is set to 1.

range

Set soundstage wideness. Default is 0.5. Allowed range is from 0 to 1. This sets cut off frequency of
low shelf filter. Default is cut off near 1550 Hz. With range set to 1 cut off frequency is set to 2100
Hz.

level_in

Set input gain. Default is 0.9.

level_out

Set output gain. Default is 1.

35.44 crystalizer# TOC

Simple algorithm to expand audio dynamic range.

The filter accepts the following options:

i

Sets the intensity of effect (default: 2.0). Must be in range between 0.0 (unchanged sound) to 10.0
(maximum effect).

c

Enable clipping. By default is enabled.

35.45 dcshift# TOC

Apply a DC shift to the audio.

This can be useful to remove a DC offset (caused perhaps by a hardware problem in the recording chain)
from the audio. The effect of a DC offset is reduced headroom and hence volume. The astats filter can be
used to determine if a signal has a DC offset.

shift

Set the DC shift, allowed range is [-1, 1]. It indicates the amount to shift the audio.

limitergain

Optional. It should have a value much less than 1 (e.g. 0.05 or 0.02) and is used to prevent clipping.

35.46 dynaudnorm# TOC

Dynamic Audio Normalizer.

This filter applies a certain amount of gain to the input audio in order to bring its peak magnitude to a
target level (e.g. 0 dBFS). However, in contrast to more "simple" normalization algorithms, the Dynamic
Audio Normalizer *dynamically* re-adjusts the gain factor to the input audio. This allows for applying
extra gain to the "quiet" sections of the audio while avoiding distortions or clipping the "loud" sections. In
other words: The Dynamic Audio Normalizer will "even out" the volume of quiet and loud sections, in the
sense that the volume of each section is brought to the same target level. Note, however, that the Dynamic
Audio Normalizer achieves this goal *without* applying "dynamic range compressing". It will retain
100% of the dynamic range *within* each section of the audio file.

f

Set the frame length in milliseconds. In range from 10 to 8000 milliseconds. Default is 500
milliseconds. The Dynamic Audio Normalizer processes the input audio in small chunks, referred to as
frames. This is required, because a peak magnitude has no meaning for just a single sample value. Instead,
we need to determine the peak magnitude for a contiguous sequence of sample values. While a "standard"
normalizer would simply use the peak magnitude of the complete file, the Dynamic Audio Normalizer
determines the peak magnitude individually for each frame. The length of a frame is specified in
milliseconds. By default, the Dynamic Audio Normalizer uses a frame length of 500 milliseconds, which
has been found to give good results with most files. Note that the exact frame length, in number of
samples, will be determined automatically, based on the sampling rate of the individual input audio file.

g

Set the Gaussian filter window size. In range from 3 to 301, must be odd number. Default is 31.
Probably the most important parameter of the Dynamic Audio Normalizer is the window size of
the Gaussian smoothing filter. The filter’s window size is specified in frames, centered around the
current frame. For the sake of simplicity, this must be an odd number. Consequently, the default
value of 31 takes into account the current frame, as well as the 15 preceding frames and the 15
subsequent frames. Using a larger window results in a stronger smoothing effect and thus in less gain
variation, i.e. slower gain adaptation. Conversely, using a smaller window results in a weaker
smoothing effect and thus in more gain variation, i.e. faster gain adaptation. In other words, the more
you increase this value, the more the Dynamic Audio Normalizer will behave like a "traditional"
normalization filter. On the contrary, the more you decrease this value, the more the Dynamic Audio
Normalizer will behave like a dynamic range compressor.

p

Set the target peak value. This specifies the highest permissible magnitude level for the normalized
audio input. This filter will try to approach the target peak magnitude as closely as possible, but at the
same time it also makes sure that the normalized signal will never exceed the peak magnitude. A
frame’s maximum local gain factor is imposed directly by the target peak magnitude. The default
value is 0.95 and thus leaves a headroom of 5%*. It is not recommended to go above this value.

m

Set the maximum gain factor. In range from 1.0 to 100.0. Default is 10.0. The Dynamic Audio
Normalizer determines the maximum possible (local) gain factor for each input frame, i.e. the
maximum gain factor that does not result in clipping or distortion. The maximum gain factor is
determined by the frame’s highest magnitude sample. However, the Dynamic Audio Normalizer
additionally bounds the frame’s maximum gain factor by a predetermined (global) maximum gain
factor. This is done in order to avoid excessive gain factors in "silent" or almost silent frames. By
default, the maximum gain factor is 10.0, For most inputs the default value should be sufficient and it
usually is not recommended to increase this value. Though, for input with an extremely low overall
volume level, it may be necessary to allow even higher gain factors. Note, however, that the Dynamic
Audio Normalizer does not simply apply a "hard" threshold (i.e. cut off values above the threshold).
Instead, a "sigmoid" threshold function will be applied. This way, the gain factors will smoothly
approach the threshold value, but never exceed that value.

r

Set the target RMS. In range from 0.0 to 1.0. Default is 0.0 - disabled. By default, the Dynamic
Audio Normalizer performs "peak" normalization. This means that the maximum local gain factor for
each frame is defined (only) by the frame’s highest magnitude sample. This way, the samples can be
amplified as much as possible without exceeding the maximum signal level, i.e. without clipping.
Optionally, however, the Dynamic Audio Normalizer can also take into account the frame’s root
mean square, abbreviated RMS. In electrical engineering, the RMS is commonly used to determine
the power of a time-varying signal. It is therefore considered that the RMS is a better approximation
of the "perceived loudness" than just looking at the signal’s peak magnitude. Consequently, by
adjusting all frames to a constant RMS value, a uniform "perceived loudness" can be established. If a
target RMS value has been specified, a frame’s local gain factor is defined as the factor that would
result in exactly that RMS value. Note, however, that the maximum local gain factor is still restricted
by the frame’s highest magnitude sample, in order to prevent clipping.

n

Enable channels coupling. By default is enabled. By default, the Dynamic Audio Normalizer will
amplify all channels by the same amount. This means the same gain factor will be applied to all
channels, i.e. the maximum possible gain factor is determined by the "loudest" channel. However, in
some recordings, it may happen that the volume of the different channels is uneven, e.g. one channel
may be "quieter" than the other one(s). In this case, this option can be used to disable the channel
coupling. This way, the gain factor will be determined independently for each channel, depending
only on the individual channel’s highest magnitude sample. This allows for harmonizing the volume
of the different channels.

c

Enable DC bias correction. By default is disabled. An audio signal (in the time domain) is a sequence
of sample values. In the Dynamic Audio Normalizer these sample values are represented in the -1.0
to 1.0 range, regardless of the original input format. Normally, the audio signal, or "waveform",
should be centered around the zero point. That means if we calculate the mean value of all samples in
a file, or in a single frame, then the result should be 0.0 or at least very close to that value. If,
however, there is a significant deviation of the mean value from 0.0, in either positive or negative
direction, this is referred to as a DC bias or DC offset. Since a DC bias is clearly undesirable, the
Dynamic Audio Normalizer provides optional DC bias correction. With DC bias correction enabled,
the Dynamic Audio Normalizer will determine the mean value, or "DC correction" offset, of each
input frame and subtract that value from all of the frame’s sample values which ensures those
samples are centered around 0.0 again. Also, in order to avoid "gaps" at the frame boundaries, the DC
correction offset values will be interpolated smoothly between neighbouring frames.

b

Enable alternative boundary mode. By default is disabled. The Dynamic Audio Normalizer takes into
account a certain neighbourhood around each frame. This includes the preceding frames as well as
the subsequent frames. However, for the "boundary" frames, located at the very beginning and at the
very end of the audio file, not all neighbouring frames are available. In particular, for the first few
frames in the audio file, the preceding frames are not known. And, similarly, for the last few frames

in the audio file, the subsequent frames are not known. Thus, the question arises which gain factors
should be assumed for the missing frames in the "boundary" region. The Dynamic Audio Normalizer
implements two modes to deal with this situation. The default boundary mode assumes a gain factor of
exactly 1.0 for the missing frames, resulting in a smooth "fade in" and "fade out" at the beginning and at
the end of the input, respectively.

s

Set the compress factor. In range from 0.0 to 30.0. Default is 0.0. By default, the Dynamic Audio
Normalizer does not apply "traditional" compression. This means that signal peaks will not be pruned
and thus the full dynamic range will be retained within each local neighbourhood. However, in some
cases it may be desirable to combine the Dynamic Audio Normalizer’s normalization algorithm with
a more "traditional" compression. For this purpose, the Dynamic Audio Normalizer provides an
optional compression (thresholding) function. If (and only if) the compression feature is enabled, all
input frames will be processed by a soft knee thresholding function prior to the actual normalization
process. Put simply, the thresholding function is going to prune all samples whose magnitude exceeds
a certain threshold value. However, the Dynamic Audio Normalizer does not simply apply a fixed
threshold value. Instead, the threshold value will be adjusted for each individual frame. In general,
smaller parameters result in stronger compression, and vice versa. Values below 3.0 are not
recommended, because audible distortion may appear.

35.47 earwax# TOC

Make audio easier to listen to on headphones.

This filter adds ‘cues’ to 44.1kHz stereo (i.e. audio CD format) audio so that when listened to on
headphones the stereo image is moved from inside your head (standard for headphones) to outside and in
front of the listener (standard for speakers).

Ported from SoX.

35.48 equalizer# TOC

Apply a two-pole peaking equalisation (EQ) filter. With this filter, the signal-level at and around a
selected frequency can be increased or decreased, whilst (unlike bandpass and bandreject filters) that at all
other frequencies is unchanged.

In order to produce complex equalisation curves, this filter can be given several times, each with a
different central frequency.

The filter accepts the following options:

frequency, f

Set the filter’s central frequency in Hz.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

width, w

Specify the band-width of a filter in width_type units.

gain, g

Set the required gain or attenuation in dB. Beware of clipping when using a positive gain.

channels, c

Specify which channels to filter, by default all available are filtered.

35.48.1 Examples# TOC

Attenuate 10 dB at 1000 Hz, with a bandwidth of 200 Hz:

equalizer=f=1000:t=h:width=200:g=-10

Apply 2 dB gain at 1000 Hz with Q 1 and attenuate 5 dB at 100 Hz with Q 2:

equalizer=f=1000:t=q:w=1:g=2,equalizer=f=100:t=q:w=2:g=-5

35.49 extrastereo# TOC

Linearly increases the difference between left and right channels which adds some sort of "live" effect to
playback.

The filter accepts the following options:

m

Sets the difference coefficient (default: 2.5). 0.0 means mono sound (average of both channels), with
1.0 sound will be unchanged, with -1.0 left and right channels will be swapped.

c

Enable clipping. By default is enabled.

35.50 firequalizer# TOC

Apply FIR Equalization using arbitrary frequency response.

The filter accepts the following option:

gain

Set gain curve equation (in dB). The expression can contain variables:

f

the evaluated frequency

sr

sample rate

ch

channel number, set to 0 when multichannels evaluation is disabled

chid

channel id, see libavutil/channel_layout.h, set to the first channel id when multichannels
evaluation is disabled

chs

number of channels

chlayout

channel_layout, see libavutil/channel_layout.h

and functions:

gain_interpolate(f)

interpolate gain on frequency f based on gain_entry

cubic_interpolate(f)

same as gain_interpolate, but smoother

This option is also available as command. Default is gain_interpolate(f).

gain_entry

Set gain entry for gain_interpolate function. The expression can contain functions:

entry(f, g)

store gain entry at frequency f with value g

This option is also available as command.

delay

Set filter delay in seconds. Higher value means more accurate. Default is 0.01.

accuracy

Set filter accuracy in Hz. Lower value means more accurate. Default is 5.

wfunc

Set window function. Acceptable values are:

rectangular

rectangular window, useful when gain curve is already smooth

hann

hann window (default)

hamming

hamming window

blackman

blackman window

nuttall3

3-terms continuous 1st derivative nuttall window

mnuttall3

minimum 3-terms discontinuous nuttall window

nuttall

4-terms continuous 1st derivative nuttall window

bnuttall

minimum 4-terms discontinuous nuttall (blackman-nuttall) window

bharris

blackman-harris window

tukey

tukey window

fixed

If enabled, use fixed number of audio samples. This improves speed when filtering with large delay.
Default is disabled.

multi

Enable multichannels evaluation on gain. Default is disabled.

zero_phase

Enable zero phase mode by subtracting timestamp to compensate delay. Default is disabled.

scale

Set scale used by gain. Acceptable values are:

linlin

linear frequency, linear gain

linlog

linear frequency, logarithmic (in dB) gain (default)

loglin

logarithmic (in octave scale where 20 Hz is 0) frequency, linear gain

loglog

logarithmic frequency, logarithmic gain

dumpfile

Set file for dumping, suitable for gnuplot.

dumpscale

Set scale for dumpfile. Acceptable values are same with scale option. Default is linlog.

fft2

Enable 2-channel convolution using complex FFT. This improves speed significantly. Default is
disabled.

min_phase

Enable minimum phase impulse response. Default is disabled.

35.50.1 Examples# TOC

lowpass at 1000 Hz:

firequalizer=gain=’if(lt(f,1000), 0, -INF)’

lowpass at 1000 Hz with gain_entry:

firequalizer=gain_entry=’entry(1000,0); entry(1001, -INF)’

custom equalization:

firequalizer=gain_entry=’entry(100,0); entry(400, -4); entry(1000, -6); entry(2000, 0)’

higher delay with zero phase to compensate delay:

firequalizer=delay=0.1:fixed=on:zero_phase=on

lowpass on left channel, highpass on right channel:

firequalizer=gain=’if(eq(chid,1), gain_interpolate(f), if(eq(chid,2), gain_interpolate(1e6+f), 0))’
:gain_entry=’entry(1000, 0); entry(1001,-INF); entry(1e6+1000,0)’:multi=on

35.51 flanger# TOC

Apply a flanging effect to the audio.

The filter accepts the following options:

delay

Set base delay in milliseconds. Range from 0 to 30. Default value is 0.

depth

Set added sweep delay in milliseconds. Range from 0 to 10. Default value is 2.

regen

Set percentage regeneration (delayed signal feedback). Range from -95 to 95. Default value is 0.

width

Set percentage of delayed signal mixed with original. Range from 0 to 100. Default value is 71.

speed

Set sweeps per second (Hz). Range from 0.1 to 10. Default value is 0.5.

shape

Set swept wave shape, can be triangular or sinusoidal. Default value is sinusoidal.

phase

Set swept wave percentage-shift for multi channel. Range from 0 to 100. Default value is 25.

interp

Set delay-line interpolation, linear or quadratic. Default is linear.

35.52 haas# TOC

Apply Haas effect to audio.

Note that this makes most sense to apply on mono signals. With this filter applied to mono signals it give
some directionality and stretches its stereo image.

The filter accepts the following options:

level_in

Set input level. By default is 1, or 0dB

level_out

Set output level. By default is 1, or 0dB.

side_gain

Set gain applied to side part of signal. By default is 1.

middle_source

Set kind of middle source. Can be one of the following:

‘left’

Pick left channel.

‘right’

Pick right channel.

‘mid’

Pick middle part signal of stereo image.

‘side’

Pick side part signal of stereo image.

middle_phase

Change middle phase. By default is disabled.

left_delay

Set left channel delay. By default is 2.05 milliseconds.

left_balance

Set left channel balance. By default is -1.

left_gain

Set left channel gain. By default is 1.

left_phase

Change left phase. By default is disabled.

right_delay

Set right channel delay. By defaults is 2.12 milliseconds.

right_balance

Set right channel balance. By default is 1.

right_gain

Set right channel gain. By default is 1.

right_phase

Change right phase. By default is enabled.

35.53 hdcd# TOC

Decodes High Definition Compatible Digital (HDCD) data. A 16-bit PCM stream with embedded HDCD
codes is expanded into a 20-bit PCM stream.

The filter supports the Peak Extend and Low-level Gain Adjustment features of HDCD, and detects the
Transient Filter flag.

ffmpeg -i HDCD16.flac -af hdcd OUT24.flac

When using the filter with wav, note the default encoding for wav is 16-bit, so the resulting 20-bit stream
will be truncated back to 16-bit. Use something like -acodec pcm_s24le after the filter to get 24-bit
PCM output.

ffmpeg -i HDCD16.wav -af hdcd OUT16.wav
ffmpeg -i HDCD16.wav -af hdcd -c:a pcm_s24le OUT24.wav

The filter accepts the following options:

disable_autoconvert

Disable any automatic format conversion or resampling in the filter graph.

process_stereo

Process the stereo channels together. If target_gain does not match between channels, consider it
invalid and use the last valid target_gain.

cdt_ms

Set the code detect timer period in ms.

force_pe

Always extend peaks above -3dBFS even if PE isn’t signaled.

analyze_mode

Replace audio with a solid tone and adjust the amplitude to signal some specific aspect of the
decoding process. The output file can be loaded in an audio editor alongside the original to aid
analysis.

analyze_mode=pe:force_pe=true can be used to see all samples above the PE level.

Modes are:

‘0, off’

Disabled

‘1, lle’

Gain adjustment level at each sample

‘2, pe’

Samples where peak extend occurs

‘3, cdt’

Samples where the code detect timer is active

‘4, tgm’

Samples where the target gain does not match between channels

35.54 headphone# TOC

Apply head-related transfer functions (HRTFs) to create virtual loudspeakers around the user for binaural
listening via headphones. The HRIRs are provided via additional streams, for each channel one stereo
input stream is needed.

The filter accepts the following options:

map

Set mapping of input streams for convolution. The argument is a ’|’-separated list of channel names
in order as they are given as additional stream inputs for filter. This also specify number of input
streams. Number of input streams must be not less than number of channels in first stream plus one.

gain

Set gain applied to audio. Value is in dB. Default is 0.

type

Set processing type. Can be time or freq. time is processing audio in time domain which is slow. freq

is processing audio in frequency domain which is fast. Default is freq.

lfe

Set custom gain for LFE channels. Value is in dB. Default is 0.

35.54.1 Examples# TOC

Full example using wav files as coefficients with amovie filters for 7.1 downmix, each amovie filter
use stereo file with IR coefficients as input. The files give coefficients for each position of virtual
loudspeaker:
ffmpeg -i input.wav -lavfi-complex "amovie=azi_270_ele_0_DFC.wav[sr],amovie=azi_90_ele_0_DFC.wav[sl],amovie=azi_225_ele_0_DFC.wav[br],amovie=azi_135_ele_0_DFC.wav[bl],amovie=azi_0_ele_0_DFC.wav,asplit[fc][lfe],amovie=azi_35_ele_0_DFC.wav[fl],amovie=azi_325_ele_0_DFC.wav[fr],[a:0][fl][fr][fc][lfe][bl][br][sl][sr]headphone=FL|FR|FC|LFE|BL|BR|SL|SR"
output.wav

35.55 highpass# TOC

Apply a high-pass filter with 3dB point frequency. The filter can be either single-pole, or double-pole (the
default). The filter roll off at 6dB per pole per octave (20dB per pole per decade).

The filter accepts the following options:

frequency, f

Set frequency in Hz. Default is 3000.

poles, p

Set number of poles. Default is 2.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

width, w

Specify the band-width of a filter in width_type units. Applies only to double-pole filter. The default
is 0.707q and gives a Butterworth response.

channels, c

Specify which channels to filter, by default all available are filtered.

35.56 join# TOC

Join multiple input streams into one multi-channel stream.

It accepts the following parameters:

inputs

The number of input streams. It defaults to 2.

channel_layout

The desired output channel layout. It defaults to stereo.

map

Map channels from inputs to output. The argument is a ’|’-separated list of mappings, each in the
input_idx.in_channel-out_channel form. input_idx is the 0-based index of the input
stream. in_channel can be either the name of the input channel (e.g. FL for front left) or its index in
the specified input stream. out_channel is the name of the output channel.

The filter will attempt to guess the mappings when they are not specified explicitly. It does so by first
trying to find an unused matching input channel and if that fails it picks the first unused input channel.

Join 3 inputs (with properly set channel layouts):

ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT

Build a 5.1 output from 6 single-channel streams:

ffmpeg -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
’join=inputs=6:channel_layout=5.1:map=0.0-FL|1.0-FR|2.0-FC|3.0-SL|4.0-SR|5.0-LFE’
out

35.57 ladspa# TOC

Load a LADSPA (Linux Audio Developer’s Simple Plugin API) plugin.

To enable compilation of this filter you need to configure FFmpeg with --enable-ladspa.

file, f

Specifies the name of LADSPA plugin library to load. If the environment variable LADSPA_PATH is
defined, the LADSPA plugin is searched in each one of the directories specified by the colon
separated list in LADSPA_PATH, otherwise in the standard LADSPA paths, which are in this order:
HOME/.ladspa/lib/, /usr/local/lib/ladspa/, /usr/lib/ladspa/.

plugin, p

Specifies the plugin within the library. Some libraries contain only one plugin, but others contain
many of them. If this is not set filter will list all available plugins within the specified library.

controls, c

Set the ’|’ separated list of controls which are zero or more floating point values that determine the
behavior of the loaded plugin (for example delay, threshold or gain). Controls need to be defined
using the following syntax: c0=value0|c1=value1|c2=value2|..., where valuei is the value set on the
i-th control. Alternatively they can be also defined using the following syntax:
value0|value1|value2|..., where valuei is the value set on the i-th control. If controls is set to
help, all available controls and their valid ranges are printed.

sample_rate, s

Specify the sample rate, default to 44100. Only used if plugin have zero inputs.

nb_samples, n

Set the number of samples per channel per each output frame, default is 1024. Only used if plugin
have zero inputs.

duration, d

Set the minimum duration of the sourced audio. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax. Note that the resulting duration may be greater than
the specified duration, as the generated audio is always cut at the end of a complete frame. If not
specified, or the expressed duration is negative, the audio is supposed to be generated forever. Only
used if plugin have zero inputs.

35.57.1 Examples# TOC

List all available plugins within amp (LADSPA example plugin) library:

ladspa=file=amp

List all available controls and their valid ranges for vcf_notch plugin from VCF library:

ladspa=f=vcf:p=vcf_notch:c=help

Simulate low quality audio equipment using Computer Music Toolkit (CMT) plugin library:

ladspa=file=cmt:plugin=lofi:controls=c0=22|c1=12|c2=12

Add reverberation to the audio using TAP-plugins (Tom’s Audio Processing plugins):

ladspa=file=tap_reverb:tap_reverb

Generate white noise, with 0.2 amplitude:

ladspa=file=cmt:noise_source_white:c=c0=.2

Generate 20 bpm clicks using plugin C* Click - Metronome from the C* Audio Plugin
Suite (CAPS) library:

ladspa=file=caps:Click:c=c1=20’

Apply C* Eq10X2 - Stereo 10-band equaliser effect:

ladspa=caps:Eq10X2:c=c0=-48|c9=-24|c3=12|c4=2

Increase volume by 20dB using fast lookahead limiter from Steve Harris SWH Plugins collection:

ladspa=fast_lookahead_limiter_1913:fastLookaheadLimiter:20|0|2

Attenuate low frequencies using Multiband EQ from Steve Harris SWH Plugins collection:

ladspa=mbeq_1197:mbeq:-24|-24|-24|0|0|0|0|0|0|0|0|0|0|0|0

Reduce stereo image using Narrower from the C* Audio Plugin Suite (CAPS) library:

ladspa=caps:Narrower

Another white noise, now using C* Audio Plugin Suite (CAPS) library:

ladspa=caps:White:.2

Some fractal noise, using C* Audio Plugin Suite (CAPS) library:

ladspa=caps:Fractal:c=c1=1

Dynamic volume normalization using VLevel plugin:

ladspa=vlevel-ladspa:vlevel_mono

35.57.2 Commands# TOC

This filter supports the following commands:

cN

Modify the N-th control value.

If the specified value is not valid, it is ignored and prior one is kept.

35.58 loudnorm# TOC

EBU R128 loudness normalization. Includes both dynamic and linear normalization modes. Support for
both single pass (livestreams, files) and double pass (files) modes. This algorithm can target IL, LRA, and
maximum true peak. To accurately detect true peaks, the audio stream will be upsampled to 192 kHz
unless the normalization mode is linear. Use the -ar option or aresample filter to explicitly set an
output sample rate.

The filter accepts the following options:

I, i

Set integrated loudness target. Range is -70.0 - -5.0. Default value is -24.0.

LRA, lra

Set loudness range target. Range is 1.0 - 20.0. Default value is 7.0.

TP, tp

Set maximum true peak. Range is -9.0 - +0.0. Default value is -2.0.

measured_I, measured_i

Measured IL of input file. Range is -99.0 - +0.0.

measured_LRA, measured_lra

Measured LRA of input file. Range is 0.0 - 99.0.

measured_TP, measured_tp

Measured true peak of input file. Range is -99.0 - +99.0.

measured_thresh

Measured threshold of input file. Range is -99.0 - +0.0.

offset

Set offset gain. Gain is applied before the true-peak limiter. Range is -99.0 - +99.0. Default is +0.0.

linear

Normalize linearly if possible. measured_I, measured_LRA, measured_TP, and measured_thresh
must also to be specified in order to use this mode. Options are true or false. Default is true.

dual_mono

Treat mono input files as "dual-mono". If a mono file is intended for playback on a stereo system, its
EBU R128 measurement will be perceptually incorrect. If set to true, this option will compensate
for this effect. Multi-channel input files are not affected by this option. Options are true or false.
Default is false.

print_format

Set print format for stats. Options are summary, json, or none. Default value is none.

35.59 lowpass# TOC

Apply a low-pass filter with 3dB point frequency. The filter can be either single-pole or double-pole (the
default). The filter roll off at 6dB per pole per octave (20dB per pole per decade).

The filter accepts the following options:

frequency, f

Set frequency in Hz. Default is 500.

poles, p

Set number of poles. Default is 2.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

width, w

Specify the band-width of a filter in width_type units. Applies only to double-pole filter. The default
is 0.707q and gives a Butterworth response.

channels, c

Specify which channels to filter, by default all available are filtered.

35.59.1 Examples# TOC

Lowpass only LFE channel, it LFE is not present it does nothing:

lowpass=c=LFE

35.60 lv2# TOC

Load a LV2 (LADSPA Version 2) plugin.

To enable compilation of this filter you need to configure FFmpeg with --enable-lv2.

plugin, p

Specifies the plugin URI. You may need to escape ’:’.

controls, c

Set the ’|’ separated list of controls which are zero or more floating point values that determine the
behavior of the loaded plugin (for example delay, threshold or gain). If controls is set to help,
all available controls and their valid ranges are printed.

sample_rate, s

Specify the sample rate, default to 44100. Only used if plugin have zero inputs.

nb_samples, n

Set the number of samples per channel per each output frame, default is 1024. Only used if plugin
have zero inputs.

duration, d

Set the minimum duration of the sourced audio. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax. Note that the resulting duration may be greater than
the specified duration, as the generated audio is always cut at the end of a complete frame. If not
specified, or the expressed duration is negative, the audio is supposed to be generated forever. Only
used if plugin have zero inputs.

35.60.1 Examples# TOC

Apply bass enhancer plugin from Calf:

lv2=p=http\\\\://calf.sourceforge.net/plugins/BassEnhancer:c=amount=2

Apply bass vinyl plugin from Calf:

lv2=p=http\\\\://calf.sourceforge.net/plugins/Vinyl:c=drone=0.2|aging=0.5

Apply bit crusher plugin from ArtyFX:

lv2=p=http\\\\://www.openavproductions.com/artyfx#bitta:c=crush=0.3

35.61 mcompand# TOC

Multiband Compress or expand the audio’s dynamic range.

The input audio is divided into bands using 4th order Linkwitz-Riley IIRs. This is akin to the crossover of
a loudspeaker, and results in flat frequency response when absent compander action.

It accepts the following parameters:

args

This option syntax is: attack,decay,[attack,decay..] soft-knee points crossover_frequency [delay
[initial_volume [gain]]] | attack,decay ... For explanation of each item refer to compand filter
documentation.

35.62 pan# TOC

Mix channels with specific gain levels. The filter accepts the output channel layout followed by a set of
channels definitions.

This filter is also designed to efficiently remap the channels of an audio stream.

The filter accepts parameters of the form: "l|outdef|outdef|..."

l

output channel layout or number of channels

outdef

output channel specification, of the form: "out_name=[gain*]in_name[(+-)[gain*]in_name...]"

out_name

output channel to define, either a channel name (FL, FR, etc.) or a channel number (c0, c1, etc.)

gain

multiplicative coefficient for the channel, 1 leaving the volume unchanged

in_name

input channel to use, see out_name for details; it is not possible to mix named and numbered input
channels

If the ‘=’ in a channel specification is replaced by ‘<’, then the gains for that specification will be
renormalized so that the total is 1, thus avoiding clipping noise.

35.62.1 Mixing examples# TOC

For example, if you want to down-mix from stereo to mono, but with a bigger factor for the left channel:

pan=1c|c0=0.9*c0+0.1*c1

A customized down-mix to stereo that works automatically for 3-, 4-, 5- and 7-channels surround:

pan=stereo| FL < FL + 0.5*FC + 0.6*BL + 0.6*SL | FR < FR + 0.5*FC + 0.6*BR + 0.6*SR

Note that ffmpeg integrates a default down-mix (and up-mix) system that should be preferred (see "-ac"
option) unless you have very specific needs.

35.62.2 Remapping examples# TOC

The channel remapping will be effective if, and only if:

gain coefficients are zeroes or ones,
only one input per channel output,

If all these conditions are satisfied, the filter will notify the user ("Pure channel mapping detected"), and
use an optimized and lossless method to do the remapping.

For example, if you have a 5.1 source and want a stereo audio stream by dropping the extra channels:

pan="stereo| c0=FL | c1=FR"

Given the same source, you can also switch front left and front right channels and keep the input channel
layout:

pan="5.1| c0=c1 | c1=c0 | c2=c2 | c3=c3 | c4=c4 | c5=c5"

If the input is a stereo audio stream, you can mute the front left channel (and still keep the stereo channel
layout) with:

pan="stereo|c1=c1"

Still with a stereo audio stream input, you can copy the right channel in both front left and right:

pan="stereo| c0=FR | c1=FR"

35.63 replaygain# TOC

ReplayGain scanner filter. This filter takes an audio stream as an input and outputs it unchanged. At end of
filtering it displays track_gain and track_peak.

35.64 resample# TOC

Convert the audio sample format, sample rate and channel layout. It is not meant to be used directly.

35.65 rubberband# TOC

Apply time-stretching and pitch-shifting with librubberband.

The filter accepts the following options:

tempo

Set tempo scale factor.

pitch

Set pitch scale factor.

transients

Set transients detector. Possible values are:

crisp
mixed
smooth

detector

Set detector. Possible values are:

compound
percussive
soft

phase

Set phase. Possible values are:

laminar
independent

window

Set processing window size. Possible values are:

standard
short
long

smoothing

Set smoothing. Possible values are:

off
on

formant

Enable formant preservation when shift pitching. Possible values are:

shifted
preserved

pitchq

Set pitch quality. Possible values are:

quality
speed
consistency

channels

Set channels. Possible values are:

apart
together

35.66 sidechaincompress# TOC

This filter acts like normal compressor but has the ability to compress detected signal using second input
signal. It needs two input streams and returns one output stream. First input stream will be processed
depending on second stream signal. The filtered signal then can be filtered with other filters in later stages
of processing. See pan and amerge filter.

The filter accepts the following options:

level_in

Set input gain. Default is 1. Range is between 0.015625 and 64.

threshold

If a signal of second stream raises above this level it will affect the gain reduction of first stream. By
default is 0.125. Range is between 0.00097563 and 1.

ratio

Set a ratio about which the signal is reduced. 1:2 means that if the level raised 4dB above the
threshold, it will be only 2dB above after the reduction. Default is 2. Range is between 1 and 20.

attack

Amount of milliseconds the signal has to rise above the threshold before gain reduction starts.
Default is 20. Range is between 0.01 and 2000.

release

Amount of milliseconds the signal has to fall below the threshold before reduction is decreased again.
Default is 250. Range is between 0.01 and 9000.

makeup

Set the amount by how much signal will be amplified after processing. Default is 1. Range is from 1
to 64.

knee

Curve the sharp knee around the threshold to enter gain reduction more softly. Default is 2.82843.
Range is between 1 and 8.

link

Choose if the average level between all channels of side-chain stream or the louder(maximum)
channel of side-chain stream affects the reduction. Default is average.

detection

Should the exact signal be taken in case of peak or an RMS one in case of rms. Default is rms
which is mainly smoother.

level_sc

Set sidechain gain. Default is 1. Range is between 0.015625 and 64.

mix

How much to use compressed signal in output. Default is 1. Range is between 0 and 1.

35.66.1 Examples# TOC

Full ffmpeg example taking 2 audio inputs, 1st input to be compressed depending on the signal of
2nd input and later compressed signal to be merged with 2nd input:

ffmpeg -i main.flac -i sidechain.flac -filter_complex "[1:a]asplit=2[sc][mix];[0:a][sc]sidechaincompress[compr];[compr][mix]amerge"

35.67 sidechaingate# TOC

A sidechain gate acts like a normal (wideband) gate but has the ability to filter the detected signal before
sending it to the gain reduction stage. Normally a gate uses the full range signal to detect a level above the
threshold. For example: If you cut all lower frequencies from your sidechain signal the gate will decrease
the volume of your track only if not enough highs appear. With this technique you are able to reduce the
resonation of a natural drum or remove "rumbling" of muted strokes from a heavily distorted guitar. It
needs two input streams and returns one output stream. First input stream will be processed depending on
second stream signal.

The filter accepts the following options:

level_in

Set input level before filtering. Default is 1. Allowed range is from 0.015625 to 64.

range

Set the level of gain reduction when the signal is below the threshold. Default is 0.06125. Allowed
range is from 0 to 1.

threshold

If a signal rises above this level the gain reduction is released. Default is 0.125. Allowed range is
from 0 to 1.

ratio

Set a ratio about which the signal is reduced. Default is 2. Allowed range is from 1 to 9000.

attack

Amount of milliseconds the signal has to rise above the threshold before gain reduction stops. Default
is 20 milliseconds. Allowed range is from 0.01 to 9000.

release

Amount of milliseconds the signal has to fall below the threshold before the reduction is increased
again. Default is 250 milliseconds. Allowed range is from 0.01 to 9000.

makeup

Set amount of amplification of signal after processing. Default is 1. Allowed range is from 1 to 64.

knee

Curve the sharp knee around the threshold to enter gain reduction more softly. Default is
2.828427125. Allowed range is from 1 to 8.

detection

Choose if exact signal should be taken for detection or an RMS like one. Default is rms. Can be peak
or rms.

link

Choose if the average level between all channels or the louder channel affects the reduction. Default
is average. Can be average or maximum.

level_sc

Set sidechain gain. Default is 1. Range is from 0.015625 to 64.

35.68 silencedetect# TOC

Detect silence in an audio stream.

This filter logs a message when it detects that the input audio volume is less or equal to a noise tolerance
value for a duration greater or equal to the minimum detected noise duration.

The printed times and duration are expressed in seconds.

The filter accepts the following options:

duration, d

Set silence duration until notification (default is 2 seconds).

noise, n

Set noise tolerance. Can be specified in dB (in case "dB" is appended to the specified value) or
amplitude ratio. Default is -60dB, or 0.001.

35.68.1 Examples# TOC

Detect 5 seconds of silence with -50dB noise tolerance:

silencedetect=n=-50dB:d=5

Complete example with ffmpeg to detect silence with 0.0001 noise tolerance in silence.mp3:

ffmpeg -i silence.mp3 -af silencedetect=noise=0.0001 -f null -

35.69 silenceremove# TOC

Remove silence from the beginning, middle or end of the audio.

The filter accepts the following options:

start_periods

This value is used to indicate if audio should be trimmed at beginning of the audio. A value of zero
indicates no silence should be trimmed from the beginning. When specifying a non-zero value, it
trims audio up until it finds non-silence. Normally, when trimming silence from beginning of audio
the start_periods will be 1 but it can be increased to higher values to trim all audio up to specific
count of non-silence periods. Default value is 0.

start_duration

Specify the amount of time that non-silence must be detected before it stops trimming audio. By
increasing the duration, bursts of noises can be treated as silence and trimmed off. Default value is 0.

start_threshold

This indicates what sample value should be treated as silence. For digital audio, a value of 0 may be
fine but for audio recorded from analog, you may wish to increase the value to account for
background noise. Can be specified in dB (in case "dB" is appended to the specified value) or
amplitude ratio. Default value is 0.

stop_periods

Set the count for trimming silence from the end of audio. To remove silence from the middle of a file,
specify a stop_periods that is negative. This value is then treated as a positive value and is used to
indicate the effect should restart processing as specified by start_periods, making it suitable for
removing periods of silence in the middle of the audio. Default value is 0.

stop_duration

Specify a duration of silence that must exist before audio is not copied any more. By specifying a
higher duration, silence that is wanted can be left in the audio. Default value is 0.

stop_threshold

This is the same as start_threshold but for trimming silence from the end of audio. Can be
specified in dB (in case "dB" is appended to the specified value) or amplitude ratio. Default value is
0.

leave_silence

This indicates that stop_duration length of audio should be left intact at the beginning of each period
of silence. For example, if you want to remove long pauses between words but do not want to remove
the pauses completely. Default value is 0.

detection

Set how is silence detected. Can be rms or peak. Second is faster and works better with digital
silence which is exactly 0. Default value is rms.

window

Set ratio used to calculate size of window for detecting silence. Default value is 0.02. Allowed
range is from 0 to 10.

35.69.1 Examples# TOC

The following example shows how this filter can be used to start a recording that does not contain the
delay at the start which usually occurs between pressing the record button and the start of the
performance:

silenceremove=1:5:0.02

Trim all silence encountered from beginning to end where there is more than 1 second of silence in
audio:

silenceremove=0:0:0:-1:1:-90dB

35.70 sofalizer# TOC

SOFAlizer uses head-related transfer functions (HRTFs) to create virtual loudspeakers around the user for
binaural listening via headphones (audio formats up to 9 channels supported). The HRTFs are stored in
SOFA files (see http://www.sofacoustics.org/ for a database). SOFAlizer is developed at the Acoustics
Research Institute (ARI) of the Austrian Academy of Sciences.

http://www.sofacoustics.org/

To enable compilation of this filter you need to configure FFmpeg with --enable-libmysofa.

The filter accepts the following options:

sofa

Set the SOFA file used for rendering.

gain

Set gain applied to audio. Value is in dB. Default is 0.

rotation

Set rotation of virtual loudspeakers in deg. Default is 0.

elevation

Set elevation of virtual speakers in deg. Default is 0.

radius

Set distance in meters between loudspeakers and the listener with near-field HRTFs. Default is 1.

type

Set processing type. Can be time or freq. time is processing audio in time domain which is slow. freq

is processing audio in frequency domain which is fast. Default is freq.

speakers

Set custom positions of virtual loudspeakers. Syntax for this option is: <CH> <AZIM>
<ELEV>[|<CH> <AZIM> <ELEV>|...]. Each virtual loudspeaker is described with short channel
name following with azimuth and elevation in degrees. Each virtual loudspeaker description is
separated by ’|’. For example to override front left and front right channel positions use:
’speakers=FL 45 15|FR 345 15’. Descriptions with unrecognised channel names are ignored.

lfegain

Set custom gain for LFE channels. Value is in dB. Default is 0.

35.70.1 Examples# TOC

Using ClubFritz6 sofa file:

sofalizer=sofa=/path/to/ClubFritz6.sofa:type=freq:radius=1

Using ClubFritz12 sofa file and bigger radius with small rotation:

sofalizer=sofa=/path/to/ClubFritz12.sofa:type=freq:radius=2:rotation=5

Similar as above but with custom speaker positions for front left, front right, back left and back right
and also with custom gain:

"sofalizer=sofa=/path/to/ClubFritz6.sofa:type=freq:radius=2:speakers=FL 45|FR 315|BL 135|BR 225:gain=28"

35.71 stereotools# TOC

This filter has some handy utilities to manage stereo signals, for converting M/S stereo recordings to L/R
signal while having control over the parameters or spreading the stereo image of master track.

The filter accepts the following options:

level_in

Set input level before filtering for both channels. Defaults is 1. Allowed range is from 0.015625 to
64.

level_out

Set output level after filtering for both channels. Defaults is 1. Allowed range is from 0.015625 to 64.

balance_in

Set input balance between both channels. Default is 0. Allowed range is from -1 to 1.

balance_out

Set output balance between both channels. Default is 0. Allowed range is from -1 to 1.

softclip

Enable softclipping. Results in analog distortion instead of harsh digital 0dB clipping. Disabled by
default.

mutel

Mute the left channel. Disabled by default.

muter

Mute the right channel. Disabled by default.

phasel

Change the phase of the left channel. Disabled by default.

phaser

Change the phase of the right channel. Disabled by default.

mode

Set stereo mode. Available values are:

‘lr>lr’

Left/Right to Left/Right, this is default.

‘lr>ms’

Left/Right to Mid/Side.

‘ms>lr’

Mid/Side to Left/Right.

‘lr>ll’

Left/Right to Left/Left.

‘lr>rr’

Left/Right to Right/Right.

‘lr>l+r’

Left/Right to Left + Right.

‘lr>rl’

Left/Right to Right/Left.

‘ms>ll’

Mid/Side to Left/Left.

‘ms>rr’

Mid/Side to Right/Right.

slev

Set level of side signal. Default is 1. Allowed range is from 0.015625 to 64.

sbal

Set balance of side signal. Default is 0. Allowed range is from -1 to 1.

mlev

Set level of the middle signal. Default is 1. Allowed range is from 0.015625 to 64.

mpan

Set middle signal pan. Default is 0. Allowed range is from -1 to 1.

base

Set stereo base between mono and inversed channels. Default is 0. Allowed range is from -1 to 1.

delay

Set delay in milliseconds how much to delay left from right channel and vice versa. Default is 0.
Allowed range is from -20 to 20.

sclevel

Set S/C level. Default is 1. Allowed range is from 1 to 100.

phase

Set the stereo phase in degrees. Default is 0. Allowed range is from 0 to 360.

bmode_in, bmode_out

Set balance mode for balance_in/balance_out option.

Can be one of the following:

‘balance’

Classic balance mode. Attenuate one channel at time. Gain is raised up to 1.

‘amplitude’

Similar as classic mode above but gain is raised up to 2.

‘power’

Equal power distribution, from -6dB to +6dB range.

35.71.1 Examples# TOC

Apply karaoke like effect:

stereotools=mlev=0.015625

Convert M/S signal to L/R:

"stereotools=mode=ms>lr"

35.72 stereowiden# TOC

This filter enhance the stereo effect by suppressing signal common to both channels and by delaying the
signal of left into right and vice versa, thereby widening the stereo effect.

The filter accepts the following options:

delay

Time in milliseconds of the delay of left signal into right and vice versa. Default is 20 milliseconds.

feedback

Amount of gain in delayed signal into right and vice versa. Gives a delay effect of left signal in right
output and vice versa which gives widening effect. Default is 0.3.

crossfeed

Cross feed of left into right with inverted phase. This helps in suppressing the mono. If the value is 1
it will cancel all the signal common to both channels. Default is 0.3.

drymix

Set level of input signal of original channel. Default is 0.8.

35.73 superequalizer# TOC

Apply 18 band equalizer.

The filter accepts the following options:

1b

Set 65Hz band gain.

2b

Set 92Hz band gain.

3b

Set 131Hz band gain.

4b

Set 185Hz band gain.

5b

Set 262Hz band gain.

6b

Set 370Hz band gain.

7b

Set 523Hz band gain.

8b

Set 740Hz band gain.

9b

Set 1047Hz band gain.

10b

Set 1480Hz band gain.

11b

Set 2093Hz band gain.

12b

Set 2960Hz band gain.

13b

Set 4186Hz band gain.

14b

Set 5920Hz band gain.

15b

Set 8372Hz band gain.

16b

Set 11840Hz band gain.

17b

Set 16744Hz band gain.

18b

Set 20000Hz band gain.

35.74 surround# TOC

Apply audio surround upmix filter.

This filter allows to produce multichannel output from audio stream.

The filter accepts the following options:

chl_out

Set output channel layout. By default, this is 5.1.

See (ffmpeg-utils)the Channel Layout section in the ffmpeg-utils(1) manual for the required syntax.

chl_in

Set input channel layout. By default, this is stereo.

See (ffmpeg-utils)the Channel Layout section in the ffmpeg-utils(1) manual for the required syntax.

level_in

Set input volume level. By default, this is 1.

level_out

Set output volume level. By default, this is 1.

lfe

Enable LFE channel output if output channel layout has it. By default, this is enabled.

lfe_low

Set LFE low cut off frequency. By default, this is 128 Hz.

lfe_high

Set LFE high cut off frequency. By default, this is 256 Hz.

fc_in

Set front center input volume. By default, this is 1.

fc_out

Set front center output volume. By default, this is 1.

lfe_in

Set LFE input volume. By default, this is 1.

lfe_out

Set LFE output volume. By default, this is 1.

35.75 treble# TOC

Boost or cut treble (upper) frequencies of the audio using a two-pole shelving filter with a response similar
to that of a standard hi-fi’s tone-controls. This is also known as shelving equalisation (EQ).

The filter accepts the following options:

gain, g

Give the gain at whichever is the lower of ~22 kHz and the Nyquist frequency. Its useful range is
about -20 (for a large cut) to +20 (for a large boost). Beware of clipping when using a positive gain.

frequency, f

Set the filter’s central frequency and so can be used to extend or reduce the frequency range to be
boosted or cut. The default value is 3000 Hz.

width_type, t

Set method to specify band-width of filter.

h

Hz

q

Q-Factor

o

octave

s

slope

width, w

Determine how steep is the filter’s shelf transition.

channels, c

Specify which channels to filter, by default all available are filtered.

35.76 tremolo# TOC

Sinusoidal amplitude modulation.

The filter accepts the following options:

f

Modulation frequency in Hertz. Modulation frequencies in the subharmonic range (20 Hz or lower)
will result in a tremolo effect. This filter may also be used as a ring modulator by specifying a
modulation frequency higher than 20 Hz. Range is 0.1 - 20000.0. Default value is 5.0 Hz.

d

Depth of modulation as a percentage. Range is 0.0 - 1.0. Default value is 0.5.

35.77 vibrato# TOC

Sinusoidal phase modulation.

The filter accepts the following options:

f

Modulation frequency in Hertz. Range is 0.1 - 20000.0. Default value is 5.0 Hz.

d

Depth of modulation as a percentage. Range is 0.0 - 1.0. Default value is 0.5.

35.78 volume# TOC

Adjust the input audio volume.

It accepts the following parameters:

volume

Set audio volume expression.

Output values are clipped to the maximum value.

The output audio volume is given by the relation:

output_volume = volume * input_volume

The default value for volume is "1.0".

precision

This parameter represents the mathematical precision.

It determines which input sample formats will be allowed, which affects the precision of the volume
scaling.

fixed

8-bit fixed-point; this limits input sample format to U8, S16, and S32.

float

32-bit floating-point; this limits input sample format to FLT. (default)

double

64-bit floating-point; this limits input sample format to DBL.

replaygain

Choose the behaviour on encountering ReplayGain side data in input frames.

drop

Remove ReplayGain side data, ignoring its contents (the default).

ignore

Ignore ReplayGain side data, but leave it in the frame.

track

Prefer the track gain, if present.

album

Prefer the album gain, if present.

replaygain_preamp

Pre-amplification gain in dB to apply to the selected replaygain gain.

Default value for replaygain_preamp is 0.0.

eval

Set when the volume expression is evaluated.

It accepts the following values:

‘once’

only evaluate expression once during the filter initialization, or when the ‘volume’ command is
sent

‘frame’

evaluate expression for each incoming frame

Default value is ‘once’.

The volume expression can contain the following parameters.

n

frame number (starting at zero)

nb_channels

number of channels

nb_consumed_samples

number of samples consumed by the filter

nb_samples

number of samples in the current frame

pos

original frame position in the file

pts

frame PTS

sample_rate

sample rate

startpts

PTS at start of stream

startt

time at start of stream

t

frame time

tb

timestamp timebase

volume

last set volume value

Note that when eval is set to ‘once’ only the sample_rate and tb variables are available, all other
variables will evaluate to NAN.

35.78.1 Commands# TOC

This filter supports the following commands:

volume

Modify the volume expression. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

replaygain_noclip

Prevent clipping by limiting the gain applied.

Default value for replaygain_noclip is 1.

35.78.2 Examples# TOC

Halve the input audio volume:

volume=volume=0.5
volume=volume=1/2
volume=volume=-6.0206dB

In all the above example the named key for volume can be omitted, for example like in:

volume=0.5

Increase input audio power by 6 decibels using fixed-point precision:

volume=volume=6dB:precision=fixed

Fade volume after time 10 with an annihilation period of 5 seconds:

volume=’if(lt(t,10),1,max(1-(t-10)/5,0))’:eval=frame

35.79 volumedetect# TOC

Detect the volume of the input video.

The filter has no parameters. The input is not modified. Statistics about the volume will be printed in the
log when the input stream end is reached.

In particular it will show the mean volume (root mean square), maximum volume (on a per-sample basis),
and the beginning of a histogram of the registered volume values (from the maximum value to a
cumulated 1/1000 of the samples).

All volumes are in decibels relative to the maximum PCM value.

35.79.1 Examples# TOC

Here is an excerpt of the output:

[Parsed_volumedetect_0 0xa23120] mean_volume: -27 dB
[Parsed_volumedetect_0 0xa23120] max_volume: -4 dB
[Parsed_volumedetect_0 0xa23120] histogram_4db: 6
[Parsed_volumedetect_0 0xa23120] histogram_5db: 62
[Parsed_volumedetect_0 0xa23120] histogram_6db: 286
[Parsed_volumedetect_0 0xa23120] histogram_7db: 1042
[Parsed_volumedetect_0 0xa23120] histogram_8db: 2551
[Parsed_volumedetect_0 0xa23120] histogram_9db: 4609
[Parsed_volumedetect_0 0xa23120] histogram_10db: 8409

It means that:

The mean square energy is approximately -27 dB, or 10^-2.7.
The largest sample is at -4 dB, or more precisely between -4 dB and -5 dB.
There are 6 samples at -4 dB, 62 at -5 dB, 286 at -6 dB, etc.

In other words, raising the volume by +4 dB does not cause any clipping, raising it by +5 dB causes
clipping for 6 samples, etc.

36 Audio Sources# TOC

Below is a description of the currently available audio sources.

36.1 abuffer# TOC

Buffer audio frames, and make them available to the filter chain.

This source is mainly intended for a programmatic use, in particular through the interface defined in
libavfilter/asrc_abuffer.h.

It accepts the following parameters:

time_base

The timebase which will be used for timestamps of submitted frames. It must be either a
floating-point number or in numerator/denominator form.

sample_rate

The sample rate of the incoming audio buffers.

sample_fmt

The sample format of the incoming audio buffers. Either a sample format name or its corresponding
integer representation from the enum AVSampleFormat in libavutil/samplefmt.h

channel_layout

The channel layout of the incoming audio buffers. Either a channel layout name from
channel_layout_map in libavutil/channel_layout.c or its corresponding integer
representation from the AV_CH_LAYOUT_* macros in libavutil/channel_layout.h

channels

The number of channels of the incoming audio buffers. If both channels and channel_layout are
specified, then they must be consistent.

36.1.1 Examples# TOC

abuffer=sample_rate=44100:sample_fmt=s16p:channel_layout=stereo

will instruct the source to accept planar 16bit signed stereo at 44100Hz. Since the sample format with
name "s16p" corresponds to the number 6 and the "stereo" channel layout corresponds to the value 0x3,
this is equivalent to:

abuffer=sample_rate=44100:sample_fmt=6:channel_layout=0x3

36.2 aevalsrc# TOC

Generate an audio signal specified by an expression.

This source accepts in input one or more expressions (one for each channel), which are evaluated and used
to generate a corresponding audio signal.

This source accepts the following options:

exprs

Set the ’|’-separated expressions list for each separate channel. In case the channel_layout
option is not specified, the selected channel layout depends on the number of provided expressions.
Otherwise the last specified expression is applied to the remaining output channels.

channel_layout, c

Set the channel layout. The number of channels in the specified layout must be equal to the number
of specified expressions.

duration, d

Set the minimum duration of the sourced audio. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax. Note that the resulting duration may be greater than
the specified duration, as the generated audio is always cut at the end of a complete frame.

If not specified, or the expressed duration is negative, the audio is supposed to be generated forever.

nb_samples, n

Set the number of samples per channel per each output frame, default to 1024.

sample_rate, s

Specify the sample rate, default to 44100.

Each expression in exprs can contain the following constants:

n

number of the evaluated sample, starting from 0

t

time of the evaluated sample expressed in seconds, starting from 0

s

sample rate

36.2.1 Examples# TOC

Generate silence:

aevalsrc=0

Generate a sin signal with frequency of 440 Hz, set sample rate to 8000 Hz:

aevalsrc="sin(440*2*PI*t):s=8000"

Generate a two channels signal, specify the channel layout (Front Center + Back Center) explicitly:

aevalsrc="sin(420*2*PI*t)|cos(430*2*PI*t):c=FC|BC"

Generate white noise:

aevalsrc="-2+random(0)"

Generate an amplitude modulated signal:

aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"

Generate 2.5 Hz binaural beats on a 360 Hz carrier:

aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) | 0.1*sin(2*PI*(360+2.5/2)*t)"

36.3 anullsrc# TOC

The null audio source, return unprocessed audio frames. It is mainly useful as a template and to be
employed in analysis / debugging tools, or as the source for filters which ignore the input data (for
example the sox synth filter).

This source accepts the following options:

channel_layout, cl

Specifies the channel layout, and can be either an integer or a string representing a channel layout.
The default value of channel_layout is "stereo".

Check the channel_layout_map definition in libavutil/channel_layout.c for the mapping
between strings and channel layout values.

sample_rate, r

Specifies the sample rate, and defaults to 44100.

nb_samples, n

Set the number of samples per requested frames.

36.3.1 Examples# TOC

Set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.

anullsrc=r=48000:cl=4

Do the same operation with a more obvious syntax:

anullsrc=r=48000:cl=mono

All the parameters need to be explicitly defined.

36.4 flite# TOC

Synthesize a voice utterance using the libflite library.

To enable compilation of this filter you need to configure FFmpeg with --enable-libflite.

Note that versions of the flite library prior to 2.0 are not thread-safe.

The filter accepts the following options:

list_voices

If set to 1, list the names of the available voices and exit immediately. Default value is 0.

nb_samples, n

Set the maximum number of samples per frame. Default value is 512.

textfile

Set the filename containing the text to speak.

text

Set the text to speak.

voice, v

Set the voice to use for the speech synthesis. Default value is kal. See also the list_voices option.

36.4.1 Examples# TOC

Read from file speech.txt, and synthesize the text using the standard flite voice:

flite=textfile=speech.txt

Read the specified text selecting the slt voice:

flite=text=’So fare thee well, poor devil of a Sub-Sub, whose commentator I am’:voice=slt

Input text to ffmpeg:

ffmpeg -f lavfi -i flite=text=’So fare thee well, poor devil of a Sub-Sub, whose commentator I am’:voice=slt

Make ffplay speak the specified text, using flite and the lavfi device:

ffplay -f lavfi flite=text=’No more be grieved for which that thou hast done.’

For more information about libflite, check: http://www.festvox.org/flite/

36.5 anoisesrc# TOC

Generate a noise audio signal.

The filter accepts the following options:

sample_rate, r

Specify the sample rate. Default value is 48000 Hz.

amplitude, a

Specify the amplitude (0.0 - 1.0) of the generated audio stream. Default value is 1.0.

duration, d

Specify the duration of the generated audio stream. Not specifying this option results in noise with an
infinite length.

color, colour, c

Specify the color of noise. Available noise colors are white, pink, brown, blue and violet. Default
color is white.

seed, s

http://www.festvox.org/flite/

Specify a value used to seed the PRNG.

nb_samples, n

Set the number of samples per each output frame, default is 1024.

36.5.1 Examples# TOC

Generate 60 seconds of pink noise, with a 44.1 kHz sampling rate and an amplitude of 0.5:

anoisesrc=d=60:c=pink:r=44100:a=0.5

36.6 sine# TOC

Generate an audio signal made of a sine wave with amplitude 1/8.

The audio signal is bit-exact.

The filter accepts the following options:

frequency, f

Set the carrier frequency. Default is 440 Hz.

beep_factor, b

Enable a periodic beep every second with frequency beep_factor times the carrier frequency. Default
is 0, meaning the beep is disabled.

sample_rate, r

Specify the sample rate, default is 44100.

duration, d

Specify the duration of the generated audio stream.

samples_per_frame

Set the number of samples per output frame.

The expression can contain the following constants:

n

The (sequential) number of the output audio frame, starting from 0.

pts

The PTS (Presentation TimeStamp) of the output audio frame, expressed in TB units.

t

The PTS of the output audio frame, expressed in seconds.

TB

The timebase of the output audio frames.

Default is 1024.

36.6.1 Examples# TOC

Generate a simple 440 Hz sine wave:

sine

Generate a 220 Hz sine wave with a 880 Hz beep each second, for 5 seconds:

sine=220:4:d=5
sine=f=220:b=4:d=5
sine=frequency=220:beep_factor=4:duration=5

Generate a 1 kHz sine wave following 1602,1601,1602,1601,1602 NTSC pattern:

sine=1000:samples_per_frame=’st(0,mod(n,5)); 1602-not(not(eq(ld(0),1)+eq(ld(0),3)))’

37 Audio Sinks# TOC

Below is a description of the currently available audio sinks.

37.1 abuffersink# TOC

Buffer audio frames, and make them available to the end of filter chain.

This sink is mainly intended for programmatic use, in particular through the interface defined in
libavfilter/buffersink.h or the options system.

It accepts a pointer to an AVABufferSinkContext structure, which defines the incoming buffers’ formats,
to be passed as the opaque parameter to avfilter_init_filter for initialization.

37.2 anullsink# TOC

Null audio sink; do absolutely nothing with the input audio. It is mainly useful as a template and for use in
analysis / debugging tools.

38 Video Filters# TOC

When you configure your FFmpeg build, you can disable any of the existing filters using
--disable-filters. The configure output will show the video filters included in your build.

Below is a description of the currently available video filters.

38.1 alphaextract# TOC

Extract the alpha component from the input as a grayscale video. This is especially useful with the
alphamerge filter.

38.2 alphamerge# TOC

Add or replace the alpha component of the primary input with the grayscale value of a second input. This
is intended for use with alphaextract to allow the transmission or storage of frame sequences that have
alpha in a format that doesn’t support an alpha channel.

For example, to reconstruct full frames from a normal YUV-encoded video and a separate video created
with alphaextract, you might use:

movie=in_alpha.mkv [alpha]; [in][alpha] alphamerge [out]

Since this filter is designed for reconstruction, it operates on frame sequences without considering
timestamps, and terminates when either input reaches end of stream. This will cause problems if your
encoding pipeline drops frames. If you’re trying to apply an image as an overlay to a video stream,
consider the overlay filter instead.

38.3 ass# TOC

Same as the subtitles filter, except that it doesn’t require libavcodec and libavformat to work. On the other
hand, it is limited to ASS (Advanced Substation Alpha) subtitles files.

This filter accepts the following option in addition to the common options from the subtitles filter:

shaping

Set the shaping engine

Available values are:

‘auto’

The default libass shaping engine, which is the best available.

‘simple’

Fast, font-agnostic shaper that can do only substitutions

‘complex’

Slower shaper using OpenType for substitutions and positioning

The default is auto.

38.4 atadenoise# TOC

Apply an Adaptive Temporal Averaging Denoiser to the video input.

The filter accepts the following options:

0a

Set threshold A for 1st plane. Default is 0.02. Valid range is 0 to 0.3.

0b

Set threshold B for 1st plane. Default is 0.04. Valid range is 0 to 5.

1a

Set threshold A for 2nd plane. Default is 0.02. Valid range is 0 to 0.3.

1b

Set threshold B for 2nd plane. Default is 0.04. Valid range is 0 to 5.

2a

Set threshold A for 3rd plane. Default is 0.02. Valid range is 0 to 0.3.

2b

Set threshold B for 3rd plane. Default is 0.04. Valid range is 0 to 5.

Threshold A is designed to react on abrupt changes in the input signal and threshold B is designed to
react on continuous changes in the input signal.

s

Set number of frames filter will use for averaging. Default is 33. Must be odd number in range [5,
129].

p

Set what planes of frame filter will use for averaging. Default is all.

38.5 avgblur# TOC

Apply average blur filter.

The filter accepts the following options:

sizeX

Set horizontal kernel size.

planes

Set which planes to filter. By default all planes are filtered.

sizeY

Set vertical kernel size, if zero it will be same as sizeX. Default is 0.

38.6 bbox# TOC

Compute the bounding box for the non-black pixels in the input frame luminance plane.

This filter computes the bounding box containing all the pixels with a luminance value greater than the
minimum allowed value. The parameters describing the bounding box are printed on the filter log.

The filter accepts the following option:

min_val

Set the minimal luminance value. Default is 16.

38.7 bitplanenoise# TOC

Show and measure bit plane noise.

The filter accepts the following options:

bitplane

Set which plane to analyze. Default is 1.

filter

Filter out noisy pixels from bitplane set above. Default is disabled.

38.8 blackdetect# TOC

Detect video intervals that are (almost) completely black. Can be useful to detect chapter transitions,
commercials, or invalid recordings. Output lines contains the time for the start, end and duration of the
detected black interval expressed in seconds.

In order to display the output lines, you need to set the loglevel at least to the AV_LOG_INFO value.

The filter accepts the following options:

black_min_duration, d

Set the minimum detected black duration expressed in seconds. It must be a non-negative floating
point number.

Default value is 2.0.

picture_black_ratio_th, pic_th

Set the threshold for considering a picture "black". Express the minimum value for the ratio:

nb_black_pixels / nb_pixels

for which a picture is considered black. Default value is 0.98.

pixel_black_th, pix_th

Set the threshold for considering a pixel "black".

The threshold expresses the maximum pixel luminance value for which a pixel is considered "black".
The provided value is scaled according to the following equation:

absolute_threshold = luminance_minimum_value + pixel_black_th * luminance_range_size

luminance_range_size and luminance_minimum_value depend on the input video format, the range is
[0-255] for YUV full-range formats and [16-235] for YUV non full-range formats.

Default value is 0.10.

The following example sets the maximum pixel threshold to the minimum value, and detects only black
intervals of 2 or more seconds:

blackdetect=d=2:pix_th=0.00

38.9 blackframe# TOC

Detect frames that are (almost) completely black. Can be useful to detect chapter transitions or
commercials. Output lines consist of the frame number of the detected frame, the percentage of blackness,
the position in the file if known or -1 and the timestamp in seconds.

In order to display the output lines, you need to set the loglevel at least to the AV_LOG_INFO value.

This filter exports frame metadata lavfi.blackframe.pblack. The value represents the percentage
of pixels in the picture that are below the threshold value.

It accepts the following parameters:

amount

The percentage of the pixels that have to be below the threshold; it defaults to 98.

threshold, thresh

The threshold below which a pixel value is considered black; it defaults to 32.

38.10 blend, tblend# TOC

Blend two video frames into each other.

The blend filter takes two input streams and outputs one stream, the first input is the "top" layer and
second input is "bottom" layer. By default, the output terminates when the longest input terminates.

The tblend (time blend) filter takes two consecutive frames from one single stream, and outputs the
result obtained by blending the new frame on top of the old frame.

A description of the accepted options follows.

c0_mode
c1_mode
c2_mode
c3_mode
all_mode

Set blend mode for specific pixel component or all pixel components in case of all_mode. Default
value is normal.

Available values for component modes are:

‘addition’
‘grainmerge’
‘and’
‘average’
‘burn’
‘darken’
‘difference’
‘grainextract’
‘divide’

‘dodge’
‘freeze’
‘exclusion’
‘extremity’
‘glow’
‘hardlight’
‘hardmix’
‘heat’
‘lighten’
‘linearlight’
‘multiply’
‘multiply128’
‘negation’
‘normal’
‘or’
‘overlay’
‘phoenix’
‘pinlight’
‘reflect’
‘screen’
‘softlight’
‘subtract’
‘vividlight’
‘xor’

c0_opacity
c1_opacity
c2_opacity
c3_opacity
all_opacity

Set blend opacity for specific pixel component or all pixel components in case of all_opacity. Only
used in combination with pixel component blend modes.

c0_expr
c1_expr
c2_expr
c3_expr
all_expr

Set blend expression for specific pixel component or all pixel components in case of all_expr. Note
that related mode options will be ignored if those are set.

The expressions can use the following variables:

N

The sequential number of the filtered frame, starting from 0.

X
Y

the coordinates of the current sample

W
H

the width and height of currently filtered plane

SW
SH

Width and height scale depending on the currently filtered plane. It is the ratio between the
corresponding luma plane number of pixels and the current plane ones. E.g. for YUV4:2:0 the
values are 1,1 for the luma plane, and 0.5,0.5 for chroma planes.

T

Time of the current frame, expressed in seconds.

TOP, A

Value of pixel component at current location for first video frame (top layer).

BOTTOM, B

Value of pixel component at current location for second video frame (bottom layer).

The blend filter also supports the framesync options.

38.10.1 Examples# TOC

Apply transition from bottom layer to top layer in first 10 seconds:

blend=all_expr=’A*(if(gte(T,10),1,T/10))+B*(1-(if(gte(T,10),1,T/10)))’

Apply linear horizontal transition from top layer to bottom layer:

blend=all_expr=’A*(X/W)+B*(1-X/W)’

Apply 1x1 checkerboard effect:

blend=all_expr=’if(eq(mod(X,2),mod(Y,2)),A,B)’

Apply uncover left effect:

blend=all_expr=’if(gte(N*SW+X,W),A,B)’

Apply uncover down effect:

blend=all_expr=’if(gte(Y-N*SH,0),A,B)’

Apply uncover up-left effect:

blend=all_expr=’if(gte(T*SH*40+Y,H)*gte((T*40*SW+X)*W/H,W),A,B)’

Split diagonally video and shows top and bottom layer on each side:

blend=all_expr=’if(gt(X,Y*(W/H)),A,B)’

Display differences between the current and the previous frame:

tblend=all_mode=grainextract

38.11 boxblur# TOC

Apply a boxblur algorithm to the input video.

It accepts the following parameters:

luma_radius, lr
luma_power, lp
chroma_radius, cr
chroma_power, cp
alpha_radius, ar
alpha_power, ap

A description of the accepted options follows.

luma_radius, lr
chroma_radius, cr
alpha_radius, ar

Set an expression for the box radius in pixels used for blurring the corresponding input plane.

The radius value must be a non-negative number, and must not be greater than the value of the
expression min(w,h)/2 for the luma and alpha planes, and of min(cw,ch)/2 for the chroma
planes.

Default value for luma_radius is "2". If not specified, chroma_radius and alpha_radius
default to the corresponding value set for luma_radius.

The expressions can contain the following constants:

w

h

The input width and height in pixels.

cw
ch

The input chroma image width and height in pixels.

hsub
vsub

The horizontal and vertical chroma subsample values. For example, for the pixel format
"yuv422p", hsub is 2 and vsub is 1.

luma_power, lp
chroma_power, cp
alpha_power, ap

Specify how many times the boxblur filter is applied to the corresponding plane.

Default value for luma_power is 2. If not specified, chroma_power and alpha_power default
to the corresponding value set for luma_power.

A value of 0 will disable the effect.

38.11.1 Examples# TOC

Apply a boxblur filter with the luma, chroma, and alpha radii set to 2:

boxblur=luma_radius=2:luma_power=1
boxblur=2:1

Set the luma radius to 2, and alpha and chroma radius to 0:

boxblur=2:1:cr=0:ar=0

Set the luma and chroma radii to a fraction of the video dimension:

boxblur=luma_radius=min(h\,w)/10:luma_power=1:chroma_radius=min(cw\,ch)/10:chroma_power=1

38.12 bwdif# TOC

Deinterlace the input video ("bwdif" stands for "Bob Weaver Deinterlacing Filter").

Motion adaptive deinterlacing based on yadif with the use of w3fdif and cubic interpolation algorithms. It
accepts the following parameters:

mode

The interlacing mode to adopt. It accepts one of the following values:

0, send_frame

Output one frame for each frame.

1, send_field

Output one frame for each field.

The default value is send_field.

parity

The picture field parity assumed for the input interlaced video. It accepts one of the following values:

0, tff

Assume the top field is first.

1, bff

Assume the bottom field is first.

-1, auto

Enable automatic detection of field parity.

The default value is auto. If the interlacing is unknown or the decoder does not export this
information, top field first will be assumed.

deint

Specify which frames to deinterlace. Accept one of the following values:

0, all

Deinterlace all frames.

1, interlaced

Only deinterlace frames marked as interlaced.

The default value is all.

38.13 chromakey# TOC

YUV colorspace color/chroma keying.

The filter accepts the following options:

color

The color which will be replaced with transparency.

similarity

Similarity percentage with the key color.

0.01 matches only the exact key color, while 1.0 matches everything.

blend

Blend percentage.

0.0 makes pixels either fully transparent, or not transparent at all.

Higher values result in semi-transparent pixels, with a higher transparency the more similar the pixels
color is to the key color.

yuv

Signals that the color passed is already in YUV instead of RGB.

Literal colors like "green" or "red" don’t make sense with this enabled anymore. This can be used to
pass exact YUV values as hexadecimal numbers.

38.13.1 Examples# TOC

Make every green pixel in the input image transparent:

ffmpeg -i input.png -vf chromakey=green out.png

Overlay a greenscreen-video on top of a static black background.

ffmpeg -f lavfi -i color=c=black:s=1280x720 -i video.mp4 -shortest -filter_complex "[1:v]chromakey=0x70de77:0.1:0.2[ckout];[0:v][ckout]overlay[out]" -map "[out]" output.mkv

38.14 ciescope# TOC

Display CIE color diagram with pixels overlaid onto it.

The filter accepts the following options:

system

Set color system.

‘ntsc, 470m’
‘ebu, 470bg’
‘smpte’
‘240m’
‘apple’
‘widergb’
‘cie1931’
‘rec709, hdtv’
‘uhdtv, rec2020’

cie

Set CIE system.

‘xyy’
‘ucs’
‘luv’

gamuts

Set what gamuts to draw.

See system option for available values.

size, s

Set ciescope size, by default set to 512.

intensity, i

Set intensity used to map input pixel values to CIE diagram.

contrast

Set contrast used to draw tongue colors that are out of active color system gamut.

corrgamma

Correct gamma displayed on scope, by default enabled.

showwhite

Show white point on CIE diagram, by default disabled.

gamma

Set input gamma. Used only with XYZ input color space.

38.15 codecview# TOC

Visualize information exported by some codecs.

Some codecs can export information through frames using side-data or other means. For example, some
MPEG based codecs export motion vectors through the export_mvs flag in the codec flags2 option.

The filter accepts the following option:

mv

Set motion vectors to visualize.

Available flags for mv are:

‘pf’

forward predicted MVs of P-frames

‘bf’

forward predicted MVs of B-frames

‘bb’

backward predicted MVs of B-frames

qp

Display quantization parameters using the chroma planes.

mv_type, mvt

Set motion vectors type to visualize. Includes MVs from all frames unless specified by frame_type
option.

Available flags for mv_type are:

‘fp’

forward predicted MVs

‘bp’

backward predicted MVs

frame_type, ft

Set frame type to visualize motion vectors of.

Available flags for frame_type are:

‘if’

intra-coded frames (I-frames)

‘pf’

predicted frames (P-frames)

‘bf’

bi-directionally predicted frames (B-frames)

38.15.1 Examples# TOC

Visualize forward predicted MVs of all frames using ffplay:

ffplay -flags2 +export_mvs input.mp4 -vf codecview=mv_type=fp

Visualize multi-directionals MVs of P and B-Frames using ffplay:

ffplay -flags2 +export_mvs input.mp4 -vf codecview=mv=pf+bf+bb

38.16 colorbalance# TOC

Modify intensity of primary colors (red, green and blue) of input frames.

The filter allows an input frame to be adjusted in the shadows, midtones or highlights regions for the
red-cyan, green-magenta or blue-yellow balance.

A positive adjustment value shifts the balance towards the primary color, a negative value towards the
complementary color.

The filter accepts the following options:

rs
gs
bs

Adjust red, green and blue shadows (darkest pixels).

rm
gm

bm

Adjust red, green and blue midtones (medium pixels).

rh
gh
bh

Adjust red, green and blue highlights (brightest pixels).

Allowed ranges for options are [-1.0, 1.0]. Defaults are 0.

38.16.1 Examples# TOC

Add red color cast to shadows:

colorbalance=rs=.3

38.17 colorkey# TOC

RGB colorspace color keying.

The filter accepts the following options:

color

The color which will be replaced with transparency.

similarity

Similarity percentage with the key color.

0.01 matches only the exact key color, while 1.0 matches everything.

blend

Blend percentage.

0.0 makes pixels either fully transparent, or not transparent at all.

Higher values result in semi-transparent pixels, with a higher transparency the more similar the pixels
color is to the key color.

38.17.1 Examples# TOC

Make every green pixel in the input image transparent:

ffmpeg -i input.png -vf colorkey=green out.png

Overlay a greenscreen-video on top of a static background image.

ffmpeg -i background.png -i video.mp4 -filter_complex "[1:v]colorkey=0x3BBD1E:0.3:0.2[ckout];[0:v][ckout]overlay[out]" -map "[out]" output.flv

38.18 colorlevels# TOC

Adjust video input frames using levels.

The filter accepts the following options:

rimin
gimin
bimin
aimin

Adjust red, green, blue and alpha input black point. Allowed ranges for options are [-1.0, 1.0].
Defaults are 0.

rimax
gimax
bimax
aimax

Adjust red, green, blue and alpha input white point. Allowed ranges for options are [-1.0, 1.0].
Defaults are 1.

Input levels are used to lighten highlights (bright tones), darken shadows (dark tones), change the
balance of bright and dark tones.

romin
gomin
bomin
aomin

Adjust red, green, blue and alpha output black point. Allowed ranges for options are [0, 1.0].
Defaults are 0.

romax
gomax
bomax
aomax

Adjust red, green, blue and alpha output white point. Allowed ranges for options are [0, 1.0].
Defaults are 1.

Output levels allows manual selection of a constrained output level range.

38.18.1 Examples# TOC

Make video output darker:

colorlevels=rimin=0.058:gimin=0.058:bimin=0.058

Increase contrast:

colorlevels=rimin=0.039:gimin=0.039:bimin=0.039:rimax=0.96:gimax=0.96:bimax=0.96

Make video output lighter:

colorlevels=rimax=0.902:gimax=0.902:bimax=0.902

Increase brightness:

colorlevels=romin=0.5:gomin=0.5:bomin=0.5

38.19 colorchannelmixer# TOC

Adjust video input frames by re-mixing color channels.

This filter modifies a color channel by adding the values associated to the other channels of the same
pixels. For example if the value to modify is red, the output value will be:

red=red*rr + blue*rb + green*rg + alpha*ra

The filter accepts the following options:

rr
rg
rb
ra

Adjust contribution of input red, green, blue and alpha channels for output red channel. Default is 1
for rr, and 0 for rg, rb and ra.

gr
gg
gb
ga

Adjust contribution of input red, green, blue and alpha channels for output green channel. Default is
1 for gg, and 0 for gr, gb and ga.

br
bg

bb
ba

Adjust contribution of input red, green, blue and alpha channels for output blue channel. Default is 1
for bb, and 0 for br, bg and ba.

ar
ag
ab
aa

Adjust contribution of input red, green, blue and alpha channels for output alpha channel. Default is 1
for aa, and 0 for ar, ag and ab.

Allowed ranges for options are [-2.0, 2.0].

38.19.1 Examples# TOC

Convert source to grayscale:

colorchannelmixer=.3:.4:.3:0:.3:.4:.3:0:.3:.4:.3

Simulate sepia tones:

colorchannelmixer=.393:.769:.189:0:.349:.686:.168:0:.272:.534:.131

38.20 colormatrix# TOC

Convert color matrix.

The filter accepts the following options:

src
dst

Specify the source and destination color matrix. Both values must be specified.

The accepted values are:

‘bt709’

BT.709

‘fcc’

FCC

‘bt601’

BT.601

‘bt470’

BT.470

‘bt470bg’

BT.470BG

‘smpte170m’

SMPTE-170M

‘smpte240m’

SMPTE-240M

‘bt2020’

BT.2020

For example to convert from BT.601 to SMPTE-240M, use the command:

colormatrix=bt601:smpte240m

38.21 colorspace# TOC

Convert colorspace, transfer characteristics or color primaries. Input video needs to have an even size.

The filter accepts the following options:

all

Specify all color properties at once.

The accepted values are:

‘bt470m’

BT.470M

‘bt470bg’

BT.470BG

‘bt601-6-525’

BT.601-6 525

‘bt601-6-625’

BT.601-6 625

‘bt709’

BT.709

‘smpte170m’

SMPTE-170M

‘smpte240m’

SMPTE-240M

‘bt2020’

BT.2020

space

Specify output colorspace.

The accepted values are:

‘bt709’

BT.709

‘fcc’

FCC

‘bt470bg’

BT.470BG or BT.601-6 625

‘smpte170m’

SMPTE-170M or BT.601-6 525

‘smpte240m’

SMPTE-240M

‘ycgco’

YCgCo

‘bt2020ncl’

BT.2020 with non-constant luminance

trc

Specify output transfer characteristics.

The accepted values are:

‘bt709’

BT.709

‘bt470m’

BT.470M

‘bt470bg’

BT.470BG

‘gamma22’

Constant gamma of 2.2

‘gamma28’

Constant gamma of 2.8

‘smpte170m’

SMPTE-170M, BT.601-6 625 or BT.601-6 525

‘smpte240m’

SMPTE-240M

‘srgb’

SRGB

‘iec61966-2-1’

iec61966-2-1

‘iec61966-2-4’

iec61966-2-4

‘xvycc’

xvycc

‘bt2020-10’

BT.2020 for 10-bits content

‘bt2020-12’

BT.2020 for 12-bits content

primaries

Specify output color primaries.

The accepted values are:

‘bt709’

BT.709

‘bt470m’

BT.470M

‘bt470bg’

BT.470BG or BT.601-6 625

‘smpte170m’

SMPTE-170M or BT.601-6 525

‘smpte240m’

SMPTE-240M

‘film’

film

‘smpte431’

SMPTE-431

‘smpte432’

SMPTE-432

‘bt2020’

BT.2020

‘jedec-p22’

JEDEC P22 phosphors

range

Specify output color range.

The accepted values are:

‘tv’

TV (restricted) range

‘mpeg’

MPEG (restricted) range

‘pc’

PC (full) range

‘jpeg’

JPEG (full) range

format

Specify output color format.

The accepted values are:

‘yuv420p’

YUV 4:2:0 planar 8-bits

‘yuv420p10’

YUV 4:2:0 planar 10-bits

‘yuv420p12’

YUV 4:2:0 planar 12-bits

‘yuv422p’

YUV 4:2:2 planar 8-bits

‘yuv422p10’

YUV 4:2:2 planar 10-bits

‘yuv422p12’

YUV 4:2:2 planar 12-bits

‘yuv444p’

YUV 4:4:4 planar 8-bits

‘yuv444p10’

YUV 4:4:4 planar 10-bits

‘yuv444p12’

YUV 4:4:4 planar 12-bits

fast

Do a fast conversion, which skips gamma/primary correction. This will take significantly less CPU,
but will be mathematically incorrect. To get output compatible with that produced by the colormatrix
filter, use fast=1.

dither

Specify dithering mode.

The accepted values are:

‘none’

No dithering

‘fsb’

Floyd-Steinberg dithering

wpadapt

Whitepoint adaptation mode.

The accepted values are:

‘bradford’

Bradford whitepoint adaptation

‘vonkries’

von Kries whitepoint adaptation

‘identity’

identity whitepoint adaptation (i.e. no whitepoint adaptation)

iall

Override all input properties at once. Same accepted values as all.

ispace

Override input colorspace. Same accepted values as space.

iprimaries

Override input color primaries. Same accepted values as primaries.

itrc

Override input transfer characteristics. Same accepted values as trc.

irange

Override input color range. Same accepted values as range.

The filter converts the transfer characteristics, color space and color primaries to the specified user values.
The output value, if not specified, is set to a default value based on the "all" property. If that property is
also not specified, the filter will log an error. The output color range and format default to the same value
as the input color range and format. The input transfer characteristics, color space, color primaries and
color range should be set on the input data. If any of these are missing, the filter will log an error and no
conversion will take place.

For example to convert the input to SMPTE-240M, use the command:

colorspace=smpte240m

38.22 convolution# TOC

Apply convolution 3x3, 5x5 or 7x7 filter.

The filter accepts the following options:

0m
1m
2m
3m

Set matrix for each plane. Matrix is sequence of 9, 25 or 49 signed integers.

0rdiv
1rdiv
2rdiv
3rdiv

Set multiplier for calculated value for each plane.

0bias
1bias
2bias
3bias

Set bias for each plane. This value is added to the result of the multiplication. Useful for making the
overall image brighter or darker. Default is 0.0.

38.22.1 Examples# TOC

Apply sharpen:

convolution="0 -1 0 -1 5 -1 0 -1 0:0 -1 0 -1 5 -1 0 -1 0:0 -1 0 -1 5 -1 0 -1 0:0 -1 0 -1 5 -1 0 -1 0"

Apply blur:

convolution="1 1 1 1 1 1 1 1 1:1 1 1 1 1 1 1 1 1:1 1 1 1 1 1 1 1 1:1 1 1 1 1 1 1 1 1:1/9:1/9:1/9:1/9"

Apply edge enhance:

convolution="0 0 0 -1 1 0 0 0 0:0 0 0 -1 1 0 0 0 0:0 0 0 -1 1 0 0 0 0:0 0 0 -1 1 0 0 0 0:5:1:1:1:0:128:128:128"

Apply edge detect:

convolution="0 1 0 1 -4 1 0 1 0:0 1 0 1 -4 1 0 1 0:0 1 0 1 -4 1 0 1 0:0 1 0 1 -4 1 0 1 0:5:5:5:1:0:128:128:128"

Apply laplacian edge detector which includes diagonals:

convolution="1 1 1 1 -8 1 1 1 1:1 1 1 1 -8 1 1 1 1:1 1 1 1 -8 1 1 1 1:1 1 1 1 -8 1 1 1 1:5:5:5:1:0:128:128:0"

Apply emboss:

convolution="-2 -1 0 -1 1 1 0 1 2:-2 -1 0 -1 1 1 0 1 2:-2 -1 0 -1 1 1 0 1 2:-2 -1 0 -1 1 1 0 1 2"

38.23 convolve# TOC

Apply 2D convolution of video stream in frequency domain using second stream as impulse.

The filter accepts the following options:

planes

Set which planes to process.

impulse

Set which impulse video frames will be processed, can be first or all. Default is all.

The convolve filter also supports the framesync options.

38.24 copy# TOC

Copy the input video source unchanged to the output. This is mainly useful for testing purposes.

38.25 coreimage# TOC

Video filtering on GPU using Apple’s CoreImage API on OSX.

Hardware acceleration is based on an OpenGL context. Usually, this means it is processed by video
hardware. However, software-based OpenGL implementations exist which means there is no guarantee for
hardware processing. It depends on the respective OSX.

There are many filters and image generators provided by Apple that come with a large variety of options.
The filter has to be referenced by its name along with its options.

The coreimage filter accepts the following options:

list_filters

List all available filters and generators along with all their respective options as well as possible
minimum and maximum values along with the default values.

list_filters=true

filter

Specify all filters by their respective name and options. Use list_filters to determine all valid filter
names and options. Numerical options are specified by a float value and are automatically clamped to
their respective value range. Vector and color options have to be specified by a list of space separated
float values. Character escaping has to be done. A special option name default is available to use
default options for a filter.

It is required to specify either default or at least one of the filter options. All omitted options are
used with their default values. The syntax of the filter string is as follows:

filter=<NAME>@<OPTION>=<VALUE>[@<OPTION>=<VALUE>][@...][#<NAME>@<OPTION>=<VALUE>[@<OPTION>=<VALUE>][@...]][#...]

output_rect

Specify a rectangle where the output of the filter chain is copied into the input image. It is given by a
list of space separated float values:

output_rect=x\ y\ width\ height

If not given, the output rectangle equals the dimensions of the input image. The output rectangle is
automatically cropped at the borders of the input image. Negative values are valid for each
component.

output_rect=25\ 25\ 100\ 100

Several filters can be chained for successive processing without GPU-HOST transfers allowing for fast
processing of complex filter chains. Currently, only filters with zero (generators) or exactly one (filters)
input image and one output image are supported. Also, transition filters are not yet usable as intended.

Some filters generate output images with additional padding depending on the respective filter kernel. The
padding is automatically removed to ensure the filter output has the same size as the input image.

For image generators, the size of the output image is determined by the previous output image of the filter
chain or the input image of the whole filterchain, respectively. The generators do not use the pixel
information of this image to generate their output. However, the generated output is blended onto this
image, resulting in partial or complete coverage of the output image.

The coreimagesrc video source can be used for generating input images which are directly fed into the
filter chain. By using it, providing input images by another video source or an input video is not required.

38.25.1 Examples# TOC

List all filters available:

coreimage=list_filters=true

Use the CIBoxBlur filter with default options to blur an image:

coreimage=filter=CIBoxBlur@default

Use a filter chain with CISepiaTone at default values and CIVignetteEffect with its center at 100x100
and a radius of 50 pixels:

coreimage=filter=CIBoxBlur@default#CIVignetteEffect@inputCenter=100\ 100@inputRadius=50

Use nullsrc and CIQRCodeGenerator to create a QR code for the FFmpeg homepage, given as
complete and escaped command-line for Apple’s standard bash shell:

ffmpeg -f lavfi -i nullsrc=s=100x100,coreimage=filter=CIQRCodeGenerator@inputMessage=https\\\\\://FFmpeg.org/@inputCorrectionLevel=H -frames:v 1 QRCode.png

38.26 crop# TOC

Crop the input video to given dimensions.

It accepts the following parameters:

w, out_w

The width of the output video. It defaults to iw. This expression is evaluated only once during the
filter configuration, or when the ‘w’ or ‘out_w’ command is sent.

h, out_h

The height of the output video. It defaults to ih. This expression is evaluated only once during the
filter configuration, or when the ‘h’ or ‘out_h’ command is sent.

x

The horizontal position, in the input video, of the left edge of the output video. It defaults to
(in_w-out_w)/2. This expression is evaluated per-frame.

y

The vertical position, in the input video, of the top edge of the output video. It defaults to
(in_h-out_h)/2. This expression is evaluated per-frame.

keep_aspect

If set to 1 will force the output display aspect ratio to be the same of the input, by changing the output
sample aspect ratio. It defaults to 0.

exact

Enable exact cropping. If enabled, subsampled videos will be cropped at exact width/height/x/y as
specified and will not be rounded to nearest smaller value. It defaults to 0.

The out_w, out_h, x, y parameters are expressions containing the following constants:

x
y

The computed values for x and y. They are evaluated for each new frame.

in_w
in_h

The input width and height.

iw
ih

These are the same as in_w and in_h.

out_w
out_h

The output (cropped) width and height.

ow
oh

These are the same as out_w and out_h.

a

same as iw / ih

sar

input sample aspect ratio

dar

input display aspect ratio, it is the same as (iw / ih) * sar

hsub
vsub

horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is
2 and vsub is 1.

n

The number of the input frame, starting from 0.

pos

the position in the file of the input frame, NAN if unknown

t

The timestamp expressed in seconds. It’s NAN if the input timestamp is unknown.

The expression for out_w may depend on the value of out_h, and the expression for out_h may depend on
out_w, but they cannot depend on x and y, as x and y are evaluated after out_w and out_h.

The x and y parameters specify the expressions for the position of the top-left corner of the output
(non-cropped) area. They are evaluated for each frame. If the evaluated value is not valid, it is
approximated to the nearest valid value.

The expression for x may depend on y, and the expression for y may depend on x.

38.26.1 Examples# TOC

Crop area with size 100x100 at position (12,34).

crop=100:100:12:34

Using named options, the example above becomes:

crop=w=100:h=100:x=12:y=34

Crop the central input area with size 100x100:

crop=100:100

Crop the central input area with size 2/3 of the input video:

crop=2/3*in_w:2/3*in_h

Crop the input video central square:

crop=out_w=in_h
crop=in_h

Delimit the rectangle with the top-left corner placed at position 100:100 and the right-bottom corner
corresponding to the right-bottom corner of the input image.

crop=in_w-100:in_h-100:100:100

Crop 10 pixels from the left and right borders, and 20 pixels from the top and bottom borders

crop=in_w-2*10:in_h-2*20

Keep only the bottom right quarter of the input image:

crop=in_w/2:in_h/2:in_w/2:in_h/2

Crop height for getting Greek harmony:

crop=in_w:1/PHI*in_w

Apply trembling effect:

crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)

Apply erratic camera effect depending on timestamp:

crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"

Set x depending on the value of y:

crop=in_w/2:in_h/2:y:10+10*sin(n/10)

38.26.2 Commands# TOC

This filter supports the following commands:

w, out_w
h, out_h
x
y

Set width/height of the output video and the horizontal/vertical position in the input video. The
command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

38.27 cropdetect# TOC

Auto-detect the crop size.

It calculates the necessary cropping parameters and prints the recommended parameters via the logging
system. The detected dimensions correspond to the non-black area of the input video.

It accepts the following parameters:

limit

Set higher black value threshold, which can be optionally specified from nothing (0) to everything
(255 for 8-bit based formats). An intensity value greater to the set value is considered non-black. It
defaults to 24. You can also specify a value between 0.0 and 1.0 which will be scaled depending on
the bitdepth of the pixel format.

round

The value which the width/height should be divisible by. It defaults to 16. The offset is automatically
adjusted to center the video. Use 2 to get only even dimensions (needed for 4:2:2 video). 16 is best
when encoding to most video codecs.

reset_count, reset

Set the counter that determines after how many frames cropdetect will reset the previously detected
largest video area and start over to detect the current optimal crop area. Default value is 0.

This can be useful when channel logos distort the video area. 0 indicates ’never reset’, and returns the
largest area encountered during playback.

38.28 curves# TOC

Apply color adjustments using curves.

This filter is similar to the Adobe Photoshop and GIMP curves tools. Each component (red, green and
blue) has its values defined by N key points tied from each other using a smooth curve. The x-axis
represents the pixel values from the input frame, and the y-axis the new pixel values to be set for the
output frame.

By default, a component curve is defined by the two points (0;0) and (1;1). This creates a straight line
where each original pixel value is "adjusted" to its own value, which means no change to the image.

The filter allows you to redefine these two points and add some more. A new curve (using a natural cubic
spline interpolation) will be define to pass smoothly through all these new coordinates. The new defined
points needs to be strictly increasing over the x-axis, and their x and y values must be in the [0;1] interval.
If the computed curves happened to go outside the vector spaces, the values will be clipped accordingly.

The filter accepts the following options:

preset

Select one of the available color presets. This option can be used in addition to the r, g, b
parameters; in this case, the later options takes priority on the preset values. Available presets are:

‘none’
‘color_negative’
‘cross_process’
‘darker’
‘increase_contrast’
‘lighter’
‘linear_contrast’
‘medium_contrast’
‘negative’
‘strong_contrast’
‘vintage’

Default is none.

master, m

Set the master key points. These points will define a second pass mapping. It is sometimes called a
"luminance" or "value" mapping. It can be used with r, g, b or all since it acts like a
post-processing LUT.

red, r

Set the key points for the red component.

green, g

Set the key points for the green component.

blue, b

Set the key points for the blue component.

all

Set the key points for all components (not including master). Can be used in addition to the other key
points component options. In this case, the unset component(s) will fallback on this all setting.

psfile

Specify a Photoshop curves file (.acv) to import the settings from.

plot

Save Gnuplot script of the curves in specified file.

To avoid some filtergraph syntax conflicts, each key points list need to be defined using the following
syntax: x0/y0 x1/y1 x2/y2

38.28.1 Examples# TOC

Increase slightly the middle level of blue:

curves=blue=’0/0 0.5/0.58 1/1’

Vintage effect:

curves=r=’0/0.11 .42/.51 1/0.95’:g=’0/0 0.50/0.48 1/1’:b=’0/0.22 .49/.44 1/0.8’

Here we obtain the following coordinates for each components:

red

(0;0.11) (0.42;0.51) (1;0.95)

green

(0;0) (0.50;0.48) (1;1)

blue

(0;0.22) (0.49;0.44) (1;0.80)

The previous example can also be achieved with the associated built-in preset:

curves=preset=vintage

Or simply:

curves=vintage

Use a Photoshop preset and redefine the points of the green component:

curves=psfile=’MyCurvesPresets/purple.acv’:green=’0/0 0.45/0.53 1/1’

Check out the curves of the cross_process profile using ffmpeg and gnuplot:

ffmpeg -f lavfi -i color -vf curves=cross_process:plot=/tmp/curves.plt -frames:v 1 -f null -
gnuplot -p /tmp/curves.plt

38.29 datascope# TOC

Video data analysis filter.

This filter shows hexadecimal pixel values of part of video.

The filter accepts the following options:

size, s

Set output video size.

x

Set x offset from where to pick pixels.

y

Set y offset from where to pick pixels.

mode

Set scope mode, can be one of the following:

‘mono’

Draw hexadecimal pixel values with white color on black background.

‘color’

Draw hexadecimal pixel values with input video pixel color on black background.

‘color2’

Draw hexadecimal pixel values on color background picked from input video, the text color is
picked in such way so its always visible.

axis

Draw rows and columns numbers on left and top of video.

opacity

Set background opacity.

38.30 dctdnoiz# TOC

Denoise frames using 2D DCT (frequency domain filtering).

This filter is not designed for real time.

The filter accepts the following options:

sigma, s

Set the noise sigma constant.

This sigma defines a hard threshold of 3 * sigma; every DCT coefficient (absolute value) below
this threshold with be dropped.

If you need a more advanced filtering, see expr.

Default is 0.

overlap

Set number overlapping pixels for each block. Since the filter can be slow, you may want to reduce
this value, at the cost of a less effective filter and the risk of various artefacts.

If the overlapping value doesn’t permit processing the whole input width or height, a warning will be
displayed and according borders won’t be denoised.

Default value is blocksize-1, which is the best possible setting.

expr, e

Set the coefficient factor expression.

For each coefficient of a DCT block, this expression will be evaluated as a multiplier value for the
coefficient.

If this is option is set, the sigma option will be ignored.

The absolute value of the coefficient can be accessed through the c variable.

n

Set the blocksize using the number of bits. 1<<n defines the blocksize, which is the width and height
of the processed blocks.

The default value is 3 (8x8) and can be raised to 4 for a blocksize of 16x16. Note that changing this
setting has huge consequences on the speed processing. Also, a larger block size does not necessarily
means a better de-noising.

38.30.1 Examples# TOC

Apply a denoise with a sigma of 4.5:

dctdnoiz=4.5

The same operation can be achieved using the expression system:

dctdnoiz=e=’gte(c, 4.5*3)’

Violent denoise using a block size of 16x16:

dctdnoiz=15:n=4

38.31 deband# TOC

Remove banding artifacts from input video. It works by replacing banded pixels with average value of
referenced pixels.

The filter accepts the following options:

1thr
2thr
3thr
4thr

Set banding detection threshold for each plane. Default is 0.02. Valid range is 0.00003 to 0.5. If
difference between current pixel and reference pixel is less than threshold, it will be considered as
banded.

range, r

Banding detection range in pixels. Default is 16. If positive, random number in range 0 to set value
will be used. If negative, exact absolute value will be used. The range defines square of four pixels around
current pixel.

direction, d

Set direction in radians from which four pixel will be compared. If positive, random direction from 0
to set direction will be picked. If negative, exact of absolute value will be picked. For example
direction 0, -PI or -2*PI radians will pick only pixels on same row and -PI/2 will pick only pixels on
same column.

blur, b

If enabled, current pixel is compared with average value of all four surrounding pixels. The default is
enabled. If disabled current pixel is compared with all four surrounding pixels. The pixel is
considered banded if only all four differences with surrounding pixels are less than threshold.

coupling, c

If enabled, current pixel is changed if and only if all pixel components are banded, e.g. banding
detection threshold is triggered for all color components. The default is disabled.

38.32 decimate# TOC

Drop duplicated frames at regular intervals.

The filter accepts the following options:

cycle

Set the number of frames from which one will be dropped. Setting this to N means one frame in every
batch of N frames will be dropped. Default is 5.

dupthresh

Set the threshold for duplicate detection. If the difference metric for a frame is less than or equal to
this value, then it is declared as duplicate. Default is 1.1

scthresh

Set scene change threshold. Default is 15.

blockx
blocky

Set the size of the x and y-axis blocks used during metric calculations. Larger blocks give better noise
suppression, but also give worse detection of small movements. Must be a power of two. Default is
32.

ppsrc

Mark main input as a pre-processed input and activate clean source input stream. This allows the
input to be pre-processed with various filters to help the metrics calculation while keeping the frame
selection lossless. When set to 1, the first stream is for the pre-processed input, and the second stream
is the clean source from where the kept frames are chosen. Default is 0.

chroma

Set whether or not chroma is considered in the metric calculations. Default is 1.

38.33 deflate# TOC

Apply deflate effect to the video.

This filter replaces the pixel by the local(3x3) average by taking into account only values lower than the
pixel.

It accepts the following options:

threshold0
threshold1
threshold2
threshold3

Limit the maximum change for each plane, default is 65535. If 0, plane will remain unchanged.

38.34 deflicker# TOC

Remove temporal frame luminance variations.

It accepts the following options:

size, s

Set moving-average filter size in frames. Default is 5. Allowed range is 2 - 129.

mode, m

Set averaging mode to smooth temporal luminance variations.

Available values are:

‘am’

Arithmetic mean

‘gm’

Geometric mean

‘hm’

Harmonic mean

‘qm’

Quadratic mean

‘cm’

Cubic mean

‘pm’

Power mean

‘median’

Median

bypass

Do not actually modify frame. Useful when one only wants metadata.

38.35 dejudder# TOC

Remove judder produced by partially interlaced telecined content.

Judder can be introduced, for instance, by pullup filter. If the original source was partially telecined
content then the output of pullup,dejudder will have a variable frame rate. May change the recorded
frame rate of the container. Aside from that change, this filter will not affect constant frame rate video.

The option available in this filter is:

cycle

Specify the length of the window over which the judder repeats.

Accepts any integer greater than 1. Useful values are:

‘4’

If the original was telecined from 24 to 30 fps (Film to NTSC).

‘5’

If the original was telecined from 25 to 30 fps (PAL to NTSC).

‘20’

If a mixture of the two.

The default is ‘4’.

38.36 delogo# TOC

Suppress a TV station logo by a simple interpolation of the surrounding pixels. Just set a rectangle
covering the logo and watch it disappear (and sometimes something even uglier appear - your mileage
may vary).

It accepts the following parameters:

x
y

Specify the top left corner coordinates of the logo. They must be specified.

w
h

Specify the width and height of the logo to clear. They must be specified.

band, t

Specify the thickness of the fuzzy edge of the rectangle (added to w and h). The default value is 1.
This option is deprecated, setting higher values should no longer be necessary and is not
recommended.

show

When set to 1, a green rectangle is drawn on the screen to simplify finding the right x, y, w, and h
parameters. The default value is 0.

The rectangle is drawn on the outermost pixels which will be (partly) replaced with interpolated
values. The values of the next pixels immediately outside this rectangle in each direction will be used
to compute the interpolated pixel values inside the rectangle.

38.36.1 Examples# TOC

Set a rectangle covering the area with top left corner coordinates 0,0 and size 100x77, and a band of
size 10:

delogo=x=0:y=0:w=100:h=77:band=10

38.37 deshake# TOC

Attempt to fix small changes in horizontal and/or vertical shift. This filter helps remove camera shake
from hand-holding a camera, bumping a tripod, moving on a vehicle, etc.

The filter accepts the following options:

x
y
w
h

Specify a rectangular area where to limit the search for motion vectors. If desired the search for
motion vectors can be limited to a rectangular area of the frame defined by its top left corner, width
and height. These parameters have the same meaning as the drawbox filter which can be used to
visualise the position of the bounding box.

This is useful when simultaneous movement of subjects within the frame might be confused for
camera motion by the motion vector search.

If any or all of x, y, w and h are set to -1 then the full frame is used. This allows later options to be set
without specifying the bounding box for the motion vector search.

Default - search the whole frame.

rx
ry

Specify the maximum extent of movement in x and y directions in the range 0-64 pixels. Default 16.

edge

Specify how to generate pixels to fill blanks at the edge of the frame. Available values are:

‘blank, 0’

Fill zeroes at blank locations

‘original, 1’

Original image at blank locations

‘clamp, 2’

Extruded edge value at blank locations

‘mirror, 3’

Mirrored edge at blank locations

Default value is ‘mirror’.

blocksize

Specify the blocksize to use for motion search. Range 4-128 pixels, default 8.

contrast

Specify the contrast threshold for blocks. Only blocks with more than the specified contrast
(difference between darkest and lightest pixels) will be considered. Range 1-255, default 125.

search

Specify the search strategy. Available values are:

‘exhaustive, 0’

Set exhaustive search

‘less, 1’

Set less exhaustive search.

Default value is ‘exhaustive’.

filename

If set then a detailed log of the motion search is written to the specified file.

38.38 despill# TOC

Remove unwanted contamination of foreground colors, caused by reflected color of greenscreen or
bluescreen.

This filter accepts the following options:

type

Set what type of despill to use.

mix

Set how spillmap will be generated.

expand

Set how much to get rid of still remaining spill.

red

Controls amount of red in spill area.

green

Controls amount of green in spill area. Should be -1 for greenscreen.

blue

Controls amount of blue in spill area. Should be -1 for bluescreen.

brightness

Controls brightness of spill area, preserving colors.

alpha

Modify alpha from generated spillmap.

38.39 detelecine# TOC

Apply an exact inverse of the telecine operation. It requires a predefined pattern specified using the pattern
option which must be the same as that passed to the telecine filter.

This filter accepts the following options:

first_field
‘top, t’

top field first

‘bottom, b’

bottom field first The default value is top.

pattern

A string of numbers representing the pulldown pattern you wish to apply. The default value is 23.

start_frame

A number representing position of the first frame with respect to the telecine pattern. This is to be
used if the stream is cut. The default value is 0.

38.40 dilation# TOC

Apply dilation effect to the video.

This filter replaces the pixel by the local(3x3) maximum.

It accepts the following options:

threshold0
threshold1
threshold2
threshold3

Limit the maximum change for each plane, default is 65535. If 0, plane will remain unchanged.

coordinates

Flag which specifies the pixel to refer to. Default is 255 i.e. all eight pixels are used.

Flags to local 3x3 coordinates maps like this:

1 2 3 4 5 6 7 8

38.41 displace# TOC

Displace pixels as indicated by second and third input stream.

It takes three input streams and outputs one stream, the first input is the source, and second and third input
are displacement maps.

The second input specifies how much to displace pixels along the x-axis, while the third input specifies
how much to displace pixels along the y-axis. If one of displacement map streams terminates, last frame
from that displacement map will be used.

Note that once generated, displacements maps can be reused over and over again.

A description of the accepted options follows.

edge

Set displace behavior for pixels that are out of range.

Available values are:

‘blank’

Missing pixels are replaced by black pixels.

‘smear’

Adjacent pixels will spread out to replace missing pixels.

‘wrap’

Out of range pixels are wrapped so they point to pixels of other side.

‘mirror’

Out of range pixels will be replaced with mirrored pixels.

Default is ‘smear’.

38.41.1 Examples# TOC

Add ripple effect to rgb input of video size hd720:
ffmpeg -i INPUT -f lavfi -i nullsrc=s=hd720,lutrgb=128:128:128 -f lavfi -i nullsrc=s=hd720,geq=’r=128+30*sin(2*PI*X/400+T):g=128+30*sin(2*PI*X/400+T):b=128+30*sin(2*PI*X/400+T)’ -lavfi ’[0][1][2]displace’ OUTPUT

Add wave effect to rgb input of video size hd720:
ffmpeg -i INPUT -f lavfi -i nullsrc=hd720,geq=’r=128+80*(sin(sqrt((X-W/2)*(X-W/2)+(Y-H/2)*(Y-H/2))/220*2*PI+T)):g=128+80*(sin(sqrt((X-W/2)*(X-W/2)+(Y-H/2)*(Y-H/2))/220*2*PI+T)):b=128+80*(sin(sqrt((X-W/2)*(X-W/2)+(Y-H/2)*(Y-H/2))/220*2*PI+T))’ -lavfi ’[1]split[x][y],[0][x][y]displace’ OUTPUT

38.42 drawbox# TOC

Draw a colored box on the input image.

It accepts the following parameters:

x
y

The expressions which specify the top left corner coordinates of the box. It defaults to 0.

width, w
height, h

The expressions which specify the width and height of the box; if 0 they are interpreted as the input
width and height. It defaults to 0.

color, c

Specify the color of the box to write. For the general syntax of this option, check the "Color" section
in the ffmpeg-utils manual. If the special value invert is used, the box edge color is the same as the
video with inverted luma.

thickness, t

The expression which sets the thickness of the box edge. A value of fill will create a filled box.
Default value is 3.

See below for the list of accepted constants.

replace

Applicable if the input has alpha. With value 1, the pixels of the painted box will overwrite the
video’s color and alpha pixels. Default is 0, which composites the box onto the input, leaving the
video’s alpha intact.

The parameters for x, y, w and h and t are expressions containing the following constants:

dar

The input display aspect ratio, it is the same as (w / h) * sar.

hsub
vsub

horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is
2 and vsub is 1.

in_h, ih
in_w, iw

The input width and height.

sar

The input sample aspect ratio.

x
y

The x and y offset coordinates where the box is drawn.

w
h

The width and height of the drawn box.

t

The thickness of the drawn box.

These constants allow the x, y, w, h and t expressions to refer to each other, so you may for example
specify y=x/dar or h=w/dar.

38.42.1 Examples# TOC

Draw a black box around the edge of the input image:

drawbox

Draw a box with color red and an opacity of 50%:

drawbox=10:20:200:60:red@0.5

The previous example can be specified as:

drawbox=x=10:y=20:w=200:h=60:color=red@0.5

Fill the box with pink color:

drawbox=x=10:y=10:w=100:h=100:color=pink@0.5:t=fill

Draw a 2-pixel red 2.40:1 mask:

drawbox=x=-t:y=0.5*(ih-iw/2.4)-t:w=iw+t*2:h=iw/2.4+t*2:t=2:c=red

38.43 drawgrid# TOC

Draw a grid on the input image.

It accepts the following parameters:

x
y

The expressions which specify the coordinates of some point of grid intersection (meant to configure
offset). Both default to 0.

width, w
height, h

The expressions which specify the width and height of the grid cell, if 0 they are interpreted as the
input width and height, respectively, minus thickness, so image gets framed. Default to 0.

color, c

Specify the color of the grid. For the general syntax of this option, check the "Color" section in the
ffmpeg-utils manual. If the special value invert is used, the grid color is the same as the video with
inverted luma.

thickness, t

The expression which sets the thickness of the grid line. Default value is 1.

See below for the list of accepted constants.

replace

Applicable if the input has alpha. With 1 the pixels of the painted grid will overwrite the video’s
color and alpha pixels. Default is 0, which composites the grid onto the input, leaving the video’s
alpha intact.

The parameters for x, y, w and h and t are expressions containing the following constants:

dar

The input display aspect ratio, it is the same as (w / h) * sar.

hsub
vsub

horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is
2 and vsub is 1.

in_h, ih
in_w, iw

The input grid cell width and height.

sar

The input sample aspect ratio.

x
y

The x and y coordinates of some point of grid intersection (meant to configure offset).

w
h

The width and height of the drawn cell.

t

The thickness of the drawn cell.

These constants allow the x, y, w, h and t expressions to refer to each other, so you may for example
specify y=x/dar or h=w/dar.

38.43.1 Examples# TOC

Draw a grid with cell 100x100 pixels, thickness 2 pixels, with color red and an opacity of 50%:

drawgrid=width=100:height=100:thickness=2:color=red@0.5

Draw a white 3x3 grid with an opacity of 50%:

drawgrid=w=iw/3:h=ih/3:t=2:c=white@0.5

38.44 drawtext# TOC

Draw a text string or text from a specified file on top of a video, using the libfreetype library.

To enable compilation of this filter, you need to configure FFmpeg with --enable-libfreetype. To
enable default font fallback and the font option you need to configure FFmpeg with
--enable-libfontconfig. To enable the text_shaping option, you need to configure FFmpeg with
--enable-libfribidi.

38.44.1 Syntax# TOC

It accepts the following parameters:

box

Used to draw a box around text using the background color. The value must be either 1 (enable) or 0
(disable). The default value of box is 0.

boxborderw

Set the width of the border to be drawn around the box using boxcolor. The default value of
boxborderw is 0.

boxcolor

The color to be used for drawing box around text. For the syntax of this option, check the "Color"
section in the ffmpeg-utils manual.

The default value of boxcolor is "white".

line_spacing

Set the line spacing in pixels of the border to be drawn around the box using box. The default value of
line_spacing is 0.

borderw

Set the width of the border to be drawn around the text using bordercolor. The default value of
borderw is 0.

bordercolor

Set the color to be used for drawing border around text. For the syntax of this option, check the
"Color" section in the ffmpeg-utils manual.

The default value of bordercolor is "black".

expansion

Select how the text is expanded. Can be either none, strftime (deprecated) or normal (default).
See the Text expansion section below for details.

basetime

Set a start time for the count. Value is in microseconds. Only applied in the deprecated strftime
expansion mode. To emulate in normal expansion mode use the pts function, supplying the start
time (in seconds) as the second argument.

fix_bounds

If true, check and fix text coords to avoid clipping.

fontcolor

The color to be used for drawing fonts. For the syntax of this option, check the "Color" section in the
ffmpeg-utils manual.

The default value of fontcolor is "black".

fontcolor_expr

String which is expanded the same way as text to obtain dynamic fontcolor value. By default this
option has empty value and is not processed. When this option is set, it overrides fontcolor option.

font

The font family to be used for drawing text. By default Sans.

fontfile

The font file to be used for drawing text. The path must be included. This parameter is mandatory if
the fontconfig support is disabled.

alpha

Draw the text applying alpha blending. The value can be a number between 0.0 and 1.0. The
expression accepts the same variables x, y as well. The default value is 1. Please see fontcolor_expr.

fontsize

The font size to be used for drawing text. The default value of fontsize is 16.

text_shaping

If set to 1, attempt to shape the text (for example, reverse the order of right-to-left text and join
Arabic characters) before drawing it. Otherwise, just draw the text exactly as given. By default 1 (if
supported).

ft_load_flags

The flags to be used for loading the fonts.

The flags map the corresponding flags supported by libfreetype, and are a combination of the
following values:

default
no_scale
no_hinting
render
no_bitmap
vertical_layout
force_autohint
crop_bitmap
pedantic
ignore_global_advance_width
no_recurse
ignore_transform
monochrome
linear_design
no_autohint

Default value is "default".

For more information consult the documentation for the FT_LOAD_* libfreetype flags.

shadowcolor

The color to be used for drawing a shadow behind the drawn text. For the syntax of this option, check
the "Color" section in the ffmpeg-utils manual.

The default value of shadowcolor is "black".

shadowx
shadowy

The x and y offsets for the text shadow position with respect to the position of the text. They can be
either positive or negative values. The default value for both is "0".

start_number

The starting frame number for the n/frame_num variable. The default value is "0".

tabsize

The size in number of spaces to use for rendering the tab. Default value is 4.

timecode

Set the initial timecode representation in "hh:mm:ss[:;.]ff" format. It can be used with or without text
parameter. timecode_rate option must be specified.

timecode_rate, rate, r

Set the timecode frame rate (timecode only). Value will be rounded to nearest integer. Minimum
value is "1". Drop-frame timecode is supported for frame rates 30 & 60.

tc24hmax

If set to 1, the output of the timecode option will wrap around at 24 hours. Default is 0 (disabled).

text

The text string to be drawn. The text must be a sequence of UTF-8 encoded characters. This
parameter is mandatory if no file is specified with the parameter textfile.

textfile

A text file containing text to be drawn. The text must be a sequence of UTF-8 encoded characters.

This parameter is mandatory if no text string is specified with the parameter text.

If both text and textfile are specified, an error is thrown.

reload

If set to 1, the textfile will be reloaded before each frame. Be sure to update it atomically, or it may be
read partially, or even fail.

x
y

The expressions which specify the offsets where text will be drawn within the video frame. They are
relative to the top/left border of the output image.

The default value of x and y is "0".

See below for the list of accepted constants and functions.

The parameters for x and y are expressions containing the following constants and functions:

dar

input display aspect ratio, it is the same as (w / h) * sar

hsub
vsub

horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is
2 and vsub is 1.

line_h, lh

the height of each text line

main_h, h, H

the input height

main_w, w, W

the input width

max_glyph_a, ascent

the maximum distance from the baseline to the highest/upper grid coordinate used to place a glyph
outline point, for all the rendered glyphs. It is a positive value, due to the grid’s orientation with the Y
axis upwards.

max_glyph_d, descent

the maximum distance from the baseline to the lowest grid coordinate used to place a glyph outline
point, for all the rendered glyphs. This is a negative value, due to the grid’s orientation, with the Y
axis upwards.

max_glyph_h

maximum glyph height, that is the maximum height for all the glyphs contained in the rendered text,
it is equivalent to ascent - descent.

max_glyph_w

maximum glyph width, that is the maximum width for all the glyphs contained in the rendered text

n

the number of input frame, starting from 0

rand(min, max)

return a random number included between min and max

sar

The input sample aspect ratio.

t

timestamp expressed in seconds, NAN if the input timestamp is unknown

text_h, th

the height of the rendered text

text_w, tw

the width of the rendered text

x
y

the x and y offset coordinates where the text is drawn.

These parameters allow the x and y expressions to refer each other, so you can for example specify
y=x/dar.

38.44.2 Text expansion# TOC

If expansion is set to strftime, the filter recognizes strftime() sequences in the provided text and
expands them accordingly. Check the documentation of strftime(). This feature is deprecated.

If expansion is set to none, the text is printed verbatim.

If expansion is set to normal (which is the default), the following expansion mechanism is used.

The backslash character ‘\’, followed by any character, always expands to the second character.

Sequences of the form %{...} are expanded. The text between the braces is a function name, possibly
followed by arguments separated by ’:’. If the arguments contain special characters or delimiters (’:’ or
’}’), they should be escaped.

Note that they probably must also be escaped as the value for the text option in the filter argument string
and as the filter argument in the filtergraph description, and possibly also for the shell, that makes up to
four levels of escaping; using a text file avoids these problems.

The following functions are available:

expr, e

The expression evaluation result.

It must take one argument specifying the expression to be evaluated, which accepts the same
constants and functions as the x and y values. Note that not all constants should be used, for example
the text size is not known when evaluating the expression, so the constants text_w and text_h will
have an undefined value.

expr_int_format, eif

Evaluate the expression’s value and output as formatted integer.

The first argument is the expression to be evaluated, just as for the expr function. The second
argument specifies the output format. Allowed values are ‘x’, ‘X’, ‘d’ and ‘u’. They are treated
exactly as in the printf function. The third parameter is optional and sets the number of positions
taken by the output. It can be used to add padding with zeros from the left.

gmtime

The time at which the filter is running, expressed in UTC. It can accept an argument: a strftime()
format string.

localtime

The time at which the filter is running, expressed in the local time zone. It can accept an argument: a
strftime() format string.

metadata

Frame metadata. Takes one or two arguments.

The first argument is mandatory and specifies the metadata key.

The second argument is optional and specifies a default value, used when the metadata key is not
found or empty.

n, frame_num

The frame number, starting from 0.

pict_type

A 1 character description of the current picture type.

pts

The timestamp of the current frame. It can take up to three arguments.

The first argument is the format of the timestamp; it defaults to flt for seconds as a decimal number
with microsecond accuracy; hms stands for a formatted [-]HH:MM:SS.mmm timestamp with
millisecond accuracy. gmtime stands for the timestamp of the frame formatted as UTC time;
localtime stands for the timestamp of the frame formatted as local time zone time.

The second argument is an offset added to the timestamp.

If the format is set to localtime or gmtime, a third argument may be supplied: a strftime() format
string. By default, YYYY-MM-DD HH:MM:SS format will be used.

38.44.3 Examples# TOC

Draw "Test Text" with font FreeSerif, using the default values for the optional parameters.

drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text=’Test Text’"

Draw ’Test Text’ with font FreeSerif of size 24 at position x=100 and y=50 (counting from the
top-left corner of the screen), text is yellow with a red box around it. Both the text and the box have
an opacity of 20%.

drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text=’Test Text’:\
 x=100: y=50: fontsize=24: fontcolor=yellow@0.2: box=1: boxcolor=red@0.2"

Note that the double quotes are not necessary if spaces are not used within the parameter list.

Show the text at the center of the video frame:

drawtext="fontsize=30:fontfile=FreeSerif.ttf:text=’hello world’:x=(w-text_w)/2:y=(h-text_h)/2"

Show the text at a random position, switching to a new position every 30 seconds:

drawtext="fontsize=30:fontfile=FreeSerif.ttf:text=’hello world’:x=if(eq(mod(t\,30)\,0)\,rand(0\,(w-text_w))\,x):y=if(eq(mod(t\,30)\,0)\,rand(0\,(h-text_h))\,y)"

Show a text line sliding from right to left in the last row of the video frame. The file LONG_LINE is
assumed to contain a single line with no newlines.

drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"

Show the content of file CREDITS off the bottom of the frame and scroll up.

drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"

Draw a single green letter "g", at the center of the input video. The glyph baseline is placed at half
screen height.

drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"

Show text for 1 second every 3 seconds:

drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:enable=lt(mod(t\,3)\,1):text=’blink’"

Use fontconfig to set the font. Note that the colons need to be escaped.

drawtext=’fontfile=Linux Libertine O-40\:style=Semibold:text=FFmpeg’

Print the date of a real-time encoding (see strftime(3)):

drawtext=’fontfile=FreeSans.ttf:text=%{localtime\:%a %b %d %Y}’

Show text fading in and out (appearing/disappearing):
#!/bin/sh
DS=1.0 # display start
DE=10.0 # display end
FID=1.5 # fade in duration
FOD=5 # fade out duration
ffplay -f lavfi "color,drawtext=text=TEST:fontsize=50:fontfile=FreeSerif.ttf:fontcolor_expr=ff0000%{eif\\\\: clip(255*(1*between(t\\, $DS + $FID\\, $DE - $FOD) + ((t - $DS)/$FID)*between(t\\, $DS\\, $DS + $FID) + (-(t - $DE)/$FOD)*between(t\\, $DE - $FOD\\, $DE))\\, 0\\, 255) \\\\: x\\\\: 2 }"

Horizontally align multiple separate texts. Note that max_glyph_a and the fontsize value are
included in the y offset.

drawtext=fontfile=FreeSans.ttf:text=DOG:fontsize=24:x=10:y=20+24-max_glyph_a,
drawtext=fontfile=FreeSans.ttf:text=cow:fontsize=24:x=80:y=20+24-max_glyph_a

For more information about libfreetype, check: http://www.freetype.org/.

For more information about fontconfig, check:
http://freedesktop.org/software/fontconfig/fontconfig-user.html.

For more information about libfribidi, check: http://fribidi.org/.

38.45 edgedetect# TOC

Detect and draw edges. The filter uses the Canny Edge Detection algorithm.

The filter accepts the following options:

low
high

Set low and high threshold values used by the Canny thresholding algorithm.

The high threshold selects the "strong" edge pixels, which are then connected through 8-connectivity
with the "weak" edge pixels selected by the low threshold.

low and high threshold values must be chosen in the range [0,1], and low should be lesser or equal to
high.

Default value for low is 20/255, and default value for high is 50/255.

http://www.freetype.org/
http://freedesktop.org/software/fontconfig/fontconfig-user.html
http://fribidi.org/

mode

Define the drawing mode.

‘wires’

Draw white/gray wires on black background.

‘colormix’

Mix the colors to create a paint/cartoon effect.

Default value is wires.

38.45.1 Examples# TOC

Standard edge detection with custom values for the hysteresis thresholding:

edgedetect=low=0.1:high=0.4

Painting effect without thresholding:

edgedetect=mode=colormix:high=0

38.46 eq# TOC

Set brightness, contrast, saturation and approximate gamma adjustment.

The filter accepts the following options:

contrast

Set the contrast expression. The value must be a float value in range -2.0 to 2.0. The default value
is "1".

brightness

Set the brightness expression. The value must be a float value in range -1.0 to 1.0. The default
value is "0".

saturation

Set the saturation expression. The value must be a float in range 0.0 to 3.0. The default value is
"1".

gamma

Set the gamma expression. The value must be a float in range 0.1 to 10.0. The default value is "1".

gamma_r

Set the gamma expression for red. The value must be a float in range 0.1 to 10.0. The default value
is "1".

gamma_g

Set the gamma expression for green. The value must be a float in range 0.1 to 10.0. The default
value is "1".

gamma_b

Set the gamma expression for blue. The value must be a float in range 0.1 to 10.0. The default
value is "1".

gamma_weight

Set the gamma weight expression. It can be used to reduce the effect of a high gamma value on bright
image areas, e.g. keep them from getting overamplified and just plain white. The value must be a
float in range 0.0 to 1.0. A value of 0.0 turns the gamma correction all the way down while 1.0
leaves it at its full strength. Default is "1".

eval

Set when the expressions for brightness, contrast, saturation and gamma expressions are evaluated.

It accepts the following values:

‘init’

only evaluate expressions once during the filter initialization or when a command is processed

‘frame’

evaluate expressions for each incoming frame

Default value is ‘init’.

The expressions accept the following parameters:

n

frame count of the input frame starting from 0

pos

byte position of the corresponding packet in the input file, NAN if unspecified

r

frame rate of the input video, NAN if the input frame rate is unknown

t

timestamp expressed in seconds, NAN if the input timestamp is unknown

38.46.1 Commands# TOC

The filter supports the following commands:

contrast

Set the contrast expression.

brightness

Set the brightness expression.

saturation

Set the saturation expression.

gamma

Set the gamma expression.

gamma_r

Set the gamma_r expression.

gamma_g

Set gamma_g expression.

gamma_b

Set gamma_b expression.

gamma_weight

Set gamma_weight expression.

The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

38.47 erosion# TOC

Apply erosion effect to the video.

This filter replaces the pixel by the local(3x3) minimum.

It accepts the following options:

threshold0
threshold1
threshold2
threshold3

Limit the maximum change for each plane, default is 65535. If 0, plane will remain unchanged.

coordinates

Flag which specifies the pixel to refer to. Default is 255 i.e. all eight pixels are used.

Flags to local 3x3 coordinates maps like this:

1 2 3 4 5 6 7 8

38.48 extractplanes# TOC

Extract color channel components from input video stream into separate grayscale video streams.

The filter accepts the following option:

planes

Set plane(s) to extract.

Available values for planes are:

‘y’
‘u’
‘v’
‘a’
‘r’
‘g’
‘b’

Choosing planes not available in the input will result in an error. That means you cannot select r, g,
b planes with y, u, v planes at same time.

38.48.1 Examples# TOC

Extract luma, u and v color channel component from input video frame into 3 grayscale outputs:

ffmpeg -i video.avi -filter_complex ’extractplanes=y+u+v[y][u][v]’ -map ’[y]’ y.avi -map ’[u]’ u.avi -map ’[v]’ v.avi

38.49 elbg# TOC

Apply a posterize effect using the ELBG (Enhanced LBG) algorithm.

For each input image, the filter will compute the optimal mapping from the input to the output given the
codebook length, that is the number of distinct output colors.

This filter accepts the following options.

codebook_length, l

Set codebook length. The value must be a positive integer, and represents the number of distinct
output colors. Default value is 256.

nb_steps, n

Set the maximum number of iterations to apply for computing the optimal mapping. The higher the
value the better the result and the higher the computation time. Default value is 1.

seed, s

Set a random seed, must be an integer included between 0 and UINT32_MAX. If not specified, or if
explicitly set to -1, the filter will try to use a good random seed on a best effort basis.

pal8

Set pal8 output pixel format. This option does not work with codebook length greater than 256.

38.50 fade# TOC

Apply a fade-in/out effect to the input video.

It accepts the following parameters:

type, t

The effect type can be either "in" for a fade-in, or "out" for a fade-out effect. Default is in.

start_frame, s

Specify the number of the frame to start applying the fade effect at. Default is 0.

nb_frames, n

The number of frames that the fade effect lasts. At the end of the fade-in effect, the output video will
have the same intensity as the input video. At the end of the fade-out transition, the output video will
be filled with the selected color. Default is 25.

alpha

If set to 1, fade only alpha channel, if one exists on the input. Default value is 0.

start_time, st

Specify the timestamp (in seconds) of the frame to start to apply the fade effect. If both start_frame
and start_time are specified, the fade will start at whichever comes last. Default is 0.

duration, d

The number of seconds for which the fade effect has to last. At the end of the fade-in effect the output
video will have the same intensity as the input video, at the end of the fade-out transition the output
video will be filled with the selected color. If both duration and nb_frames are specified, duration
is used. Default is 0 (nb_frames is used by default).

color, c

Specify the color of the fade. Default is "black".

38.50.1 Examples# TOC

Fade in the first 30 frames of video:

fade=in:0:30

The command above is equivalent to:

fade=t=in:s=0:n=30

Fade out the last 45 frames of a 200-frame video:

fade=out:155:45
fade=type=out:start_frame=155:nb_frames=45

Fade in the first 25 frames and fade out the last 25 frames of a 1000-frame video:

fade=in:0:25, fade=out:975:25

Make the first 5 frames yellow, then fade in from frame 5-24:

fade=in:5:20:color=yellow

Fade in alpha over first 25 frames of video:

fade=in:0:25:alpha=1

Make the first 5.5 seconds black, then fade in for 0.5 seconds:

fade=t=in:st=5.5:d=0.5

38.51 fftfilt# TOC

Apply arbitrary expressions to samples in frequency domain

dc_Y

Adjust the dc value (gain) of the luma plane of the image. The filter accepts an integer value in range
0 to 1000. The default value is set to 0.

dc_U

Adjust the dc value (gain) of the 1st chroma plane of the image. The filter accepts an integer value in
range 0 to 1000. The default value is set to 0.

dc_V

Adjust the dc value (gain) of the 2nd chroma plane of the image. The filter accepts an integer value in
range 0 to 1000. The default value is set to 0.

weight_Y

Set the frequency domain weight expression for the luma plane.

weight_U

Set the frequency domain weight expression for the 1st chroma plane.

weight_V

Set the frequency domain weight expression for the 2nd chroma plane.

eval

Set when the expressions are evaluated.

It accepts the following values:

‘init’

Only evaluate expressions once during the filter initialization.

‘frame’

Evaluate expressions for each incoming frame.

Default value is ‘init’.

The filter accepts the following variables:

X
Y

The coordinates of the current sample.

W
H

The width and height of the image.

N

The number of input frame, starting from 0.

38.51.1 Examples# TOC

High-pass:

fftfilt=dc_Y=128:weight_Y=’squish(1-(Y+X)/100)’

Low-pass:

fftfilt=dc_Y=0:weight_Y=’squish((Y+X)/100-1)’

Sharpen:

fftfilt=dc_Y=0:weight_Y=’1+squish(1-(Y+X)/100)’

Blur:

fftfilt=dc_Y=0:weight_Y=’exp(-4 * ((Y+X)/(W+H)))’

38.52 field# TOC

Extract a single field from an interlaced image using stride arithmetic to avoid wasting CPU time. The
output frames are marked as non-interlaced.

The filter accepts the following options:

type

Specify whether to extract the top (if the value is 0 or top) or the bottom field (if the value is 1 or
bottom).

38.53 fieldhint# TOC

Create new frames by copying the top and bottom fields from surrounding frames supplied as numbers by
the hint file.

hint

Set file containing hints: absolute/relative frame numbers.

There must be one line for each frame in a clip. Each line must contain two numbers separated by the
comma, optionally followed by - or +. Numbers supplied on each line of file can not be out of
[N-1,N+1] where N is current frame number for absolute mode or out of [-1, 1] range for
relative mode. First number tells from which frame to pick up top field and second number tells
from which frame to pick up bottom field.

If optionally followed by + output frame will be marked as interlaced, else if followed by - output
frame will be marked as progressive, else it will be marked same as input frame. If line starts with #
or ; that line is skipped.

mode

Can be item absolute or relative. Default is absolute.

Example of first several lines of hint file for relative mode:

0,0 - # first frame
1,0 - # second frame, use third’s frame top field and second’s frame bottom field
1,0 - # third frame, use fourth’s frame top field and third’s frame bottom field
1,0 -
0,0 -
0,0 -
1,0 -
1,0 -
1,0 -
0,0 -
0,0 -
1,0 -
1,0 -
1,0 -
0,0 -

38.54 fieldmatch# TOC

Field matching filter for inverse telecine. It is meant to reconstruct the progressive frames from a telecined
stream. The filter does not drop duplicated frames, so to achieve a complete inverse telecine
fieldmatch needs to be followed by a decimation filter such as decimate in the filtergraph.

The separation of the field matching and the decimation is notably motivated by the possibility of inserting
a de-interlacing filter fallback between the two. If the source has mixed telecined and real interlaced
content, fieldmatch will not be able to match fields for the interlaced parts. But these remaining

combed frames will be marked as interlaced, and thus can be de-interlaced by a later filter such as yadif
before decimation.

In addition to the various configuration options, fieldmatch can take an optional second stream,
activated through the ppsrc option. If enabled, the frames reconstruction will be based on the fields and
frames from this second stream. This allows the first input to be pre-processed in order to help the various
algorithms of the filter, while keeping the output lossless (assuming the fields are matched properly).
Typically, a field-aware denoiser, or brightness/contrast adjustments can help.

Note that this filter uses the same algorithms as TIVTC/TFM (AviSynth project) and VIVTC/VFM
(VapourSynth project). The later is a light clone of TFM from which fieldmatch is based on. While
the semantic and usage are very close, some behaviour and options names can differ.

The decimate filter currently only works for constant frame rate input. If your input has mixed telecined
(30fps) and progressive content with a lower framerate like 24fps use the following filterchain to produce
the necessary cfr stream: dejudder,fps=30000/1001,fieldmatch,decimate.

The filter accepts the following options:

order

Specify the assumed field order of the input stream. Available values are:

‘auto’

Auto detect parity (use FFmpeg’s internal parity value).

‘bff’

Assume bottom field first.

‘tff’

Assume top field first.

Note that it is sometimes recommended not to trust the parity announced by the stream.

Default value is auto.

mode

Set the matching mode or strategy to use. pc mode is the safest in the sense that it won’t risk creating
jerkiness due to duplicate frames when possible, but if there are bad edits or blended fields it will end
up outputting combed frames when a good match might actually exist. On the other hand, pcn_ub
mode is the most risky in terms of creating jerkiness, but will almost always find a good frame if
there is one. The other values are all somewhere in between pc and pcn_ub in terms of risking
jerkiness and creating duplicate frames versus finding good matches in sections with bad edits,
orphaned fields, blended fields, etc.

More details about p/c/n/u/b are available in p/c/n/u/b meaning section.

Available values are:

‘pc’

2-way matching (p/c)

‘pc_n’

2-way matching, and trying 3rd match if still combed (p/c + n)

‘pc_u’

2-way matching, and trying 3rd match (same order) if still combed (p/c + u)

‘pc_n_ub’

2-way matching, trying 3rd match if still combed, and trying 4th/5th matches if still combed (p/c
+ n + u/b)

‘pcn’

3-way matching (p/c/n)

‘pcn_ub’

3-way matching, and trying 4th/5th matches if all 3 of the original matches are detected as
combed (p/c/n + u/b)

The parenthesis at the end indicate the matches that would be used for that mode assuming
order=tff (and field on auto or top).

In terms of speed pc mode is by far the fastest and pcn_ub is the slowest.

Default value is pc_n.

ppsrc

Mark the main input stream as a pre-processed input, and enable the secondary input stream as the
clean source to pick the fields from. See the filter introduction for more details. It is similar to the
clip2 feature from VFM/TFM.

Default value is 0 (disabled).

field

Set the field to match from. It is recommended to set this to the same value as order unless you
experience matching failures with that setting. In certain circumstances changing the field that is used
to match from can have a large impact on matching performance. Available values are:

‘auto’

Automatic (same value as order).

‘bottom’

Match from the bottom field.

‘top’

Match from the top field.

Default value is auto.

mchroma

Set whether or not chroma is included during the match comparisons. In most cases it is
recommended to leave this enabled. You should set this to 0 only if your clip has bad chroma
problems such as heavy rainbowing or other artifacts. Setting this to 0 could also be used to speed
things up at the cost of some accuracy.

Default value is 1.

y0
y1

These define an exclusion band which excludes the lines between y0 and y1 from being included in
the field matching decision. An exclusion band can be used to ignore subtitles, a logo, or other things
that may interfere with the matching. y0 sets the starting scan line and y1 sets the ending line; all
lines in between y0 and y1 (including y0 and y1) will be ignored. Setting y0 and y1 to the same
value will disable the feature. y0 and y1 defaults to 0.

scthresh

Set the scene change detection threshold as a percentage of maximum change on the luma plane.
Good values are in the [8.0, 14.0] range. Scene change detection is only relevant in case
combmatch=sc. The range for scthresh is [0.0, 100.0].

Default value is 12.0.

combmatch

When combatch is not none, fieldmatch will take into account the combed scores of matches
when deciding what match to use as the final match. Available values are:

‘none’

No final matching based on combed scores.

‘sc’

Combed scores are only used when a scene change is detected.

‘full’

Use combed scores all the time.

Default is sc.

combdbg

Force fieldmatch to calculate the combed metrics for certain matches and print them. This setting
is known as micout in TFM/VFM vocabulary. Available values are:

‘none’

No forced calculation.

‘pcn’

Force p/c/n calculations.

‘pcnub’

Force p/c/n/u/b calculations.

Default value is none.

cthresh

This is the area combing threshold used for combed frame detection. This essentially controls how
"strong" or "visible" combing must be to be detected. Larger values mean combing must be more
visible and smaller values mean combing can be less visible or strong and still be detected. Valid
settings are from -1 (every pixel will be detected as combed) to 255 (no pixel will be detected as
combed). This is basically a pixel difference value. A good range is [8, 12].

Default value is 9.

chroma

Sets whether or not chroma is considered in the combed frame decision. Only disable this if your
source has chroma problems (rainbowing, etc.) that are causing problems for the combed frame
detection with chroma enabled. Actually, using chroma=0 is usually more reliable, except for the
case where there is chroma only combing in the source.

Default value is 0.

blockx
blocky

Respectively set the x-axis and y-axis size of the window used during combed frame detection. This
has to do with the size of the area in which combpel pixels are required to be detected as combed
for a frame to be declared combed. See the combpel parameter description for more info. Possible
values are any number that is a power of 2 starting at 4 and going up to 512.

Default value is 16.

combpel

The number of combed pixels inside any of the blocky by blockx size blocks on the frame for the
frame to be detected as combed. While cthresh controls how "visible" the combing must be, this
setting controls "how much" combing there must be in any localized area (a window defined by the
blockx and blocky settings) on the frame. Minimum value is 0 and maximum is blocky x
blockx (at which point no frames will ever be detected as combed). This setting is known as MI in
TFM/VFM vocabulary.

Default value is 80.

38.54.1 p/c/n/u/b meaning# TOC

38.54.1.1 p/c/n# TOC

We assume the following telecined stream:

Top fields: 1 2 2 3 4
Bottom fields: 1 2 3 4 4

The numbers correspond to the progressive frame the fields relate to. Here, the first two frames are
progressive, the 3rd and 4th are combed, and so on.

When fieldmatch is configured to run a matching from bottom (field=bottom) this is how this input
stream get transformed:

Input stream:
 T 1 2 2 3 4
 B 1 2 3 4 4 <-- matching reference

Matches: c c n n c

Output stream:
 T 1 2 3 4 4
 B 1 2 3 4 4

As a result of the field matching, we can see that some frames get duplicated. To perform a complete
inverse telecine, you need to rely on a decimation filter after this operation. See for instance the decimate
filter.

The same operation now matching from top fields (field=top) looks like this:

Input stream:
 T 1 2 2 3 4 <-- matching reference
 B 1 2 3 4 4

Matches: c c p p c

Output stream:
 T 1 2 2 3 4
 B 1 2 2 3 4

In these examples, we can see what p, c and n mean; basically, they refer to the frame and field of the
opposite parity:

p matches the field of the opposite parity in the previous frame
c matches the field of the opposite parity in the current frame
n matches the field of the opposite parity in the next frame

38.54.1.2 u/b# TOC

The u and b matching are a bit special in the sense that they match from the opposite parity flag. In the
following examples, we assume that we are currently matching the 2nd frame (Top:2, bottom:2).
According to the match, a ’x’ is placed above and below each matched fields.

With bottom matching (field=bottom):

Match: c p n b u

 x x x x x
 Top 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2
 Bottom 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
 x x x x x

Output frames:
 2 1 2 2 2
 2 2 2 1 3

With top matching (field=top):

Match: c p n b u

 x x x x x
 Top 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2
 Bottom 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
 x x x x x

Output frames:
 2 2 2 1 2
 2 1 3 2 2

38.54.2 Examples# TOC

Simple IVTC of a top field first telecined stream:

fieldmatch=order=tff:combmatch=none, decimate

Advanced IVTC, with fallback on yadif for still combed frames:

fieldmatch=order=tff:combmatch=full, yadif=deint=interlaced, decimate

38.55 fieldorder# TOC

Transform the field order of the input video.

It accepts the following parameters:

order

The output field order. Valid values are tff for top field first or bff for bottom field first.

The default value is ‘tff’.

The transformation is done by shifting the picture content up or down by one line, and filling the
remaining line with appropriate picture content. This method is consistent with most broadcast field order
converters.

If the input video is not flagged as being interlaced, or it is already flagged as being of the required output
field order, then this filter does not alter the incoming video.

It is very useful when converting to or from PAL DV material, which is bottom field first.

For example:

ffmpeg -i in.vob -vf "fieldorder=bff" out.dv

38.56 fifo, afifo# TOC

Buffer input images and send them when they are requested.

It is mainly useful when auto-inserted by the libavfilter framework.

It does not take parameters.

38.57 fillborders# TOC

Fill borders of the input video, without changing video stream dimensions. Sometimes video can have
garbage at the four edges and you may not want to crop video input to keep size multiple of some number.

This filter accepts the following options:

left

Number of pixels to fill from left border.

right

Number of pixels to fill from right border.

top

Number of pixels to fill from top border.

bottom

Number of pixels to fill from bottom border.

mode

Set fill mode.

It accepts the following values:

‘smear’

fill pixels using outermost pixels

‘mirror’

fill pixels using mirroring

‘fixed’

fill pixels with constant value

Default is smear.

color

Set color for pixels in fixed mode. Default is black.

38.58 find_rect# TOC

Find a rectangular object

It accepts the following options:

object

Filepath of the object image, needs to be in gray8.

threshold

Detection threshold, default is 0.5.

mipmaps

Number of mipmaps, default is 3.

xmin, ymin, xmax, ymax

Specifies the rectangle in which to search.

38.58.1 Examples# TOC

Generate a representative palette of a given video using ffmpeg:

ffmpeg -i file.ts -vf find_rect=newref.pgm,cover_rect=cover.jpg:mode=cover new.mkv

38.59 cover_rect# TOC

Cover a rectangular object

It accepts the following options:

cover

Filepath of the optional cover image, needs to be in yuv420.

mode

Set covering mode.

It accepts the following values:

‘cover’

cover it by the supplied image

‘blur’

cover it by interpolating the surrounding pixels

Default value is blur.

38.59.1 Examples# TOC

Generate a representative palette of a given video using ffmpeg:

ffmpeg -i file.ts -vf find_rect=newref.pgm,cover_rect=cover.jpg:mode=cover new.mkv

38.60 floodfill# TOC

Flood area with values of same pixel components with another values.

It accepts the following options:

x

Set pixel x coordinate.

y

Set pixel y coordinate.

s0

Set source #0 component value.

s1

Set source #1 component value.

s2

Set source #2 component value.

s3

Set source #3 component value.

d0

Set destination #0 component value.

d1

Set destination #1 component value.

d2

Set destination #2 component value.

d3

Set destination #3 component value.

38.61 format# TOC

Convert the input video to one of the specified pixel formats. Libavfilter will try to pick one that is
suitable as input to the next filter.

It accepts the following parameters:

pix_fmts

A ’|’-separated list of pixel format names, such as "pix_fmts=yuv420p|monow|rgb24".

38.61.1 Examples# TOC

Convert the input video to the yuv420p format

format=pix_fmts=yuv420p

Convert the input video to any of the formats in the list

format=pix_fmts=yuv420p|yuv444p|yuv410p

38.62 fps# TOC

Convert the video to specified constant frame rate by duplicating or dropping frames as necessary.

It accepts the following parameters:

fps

The desired output frame rate. The default is 25.

start_time

Assume the first PTS should be the given value, in seconds. This allows for padding/trimming at the
start of stream. By default, no assumption is made about the first frame’s expected PTS, so no
padding or trimming is done. For example, this could be set to 0 to pad the beginning with duplicates
of the first frame if a video stream starts after the audio stream or to trim any frames with a negative
PTS.

round

Timestamp (PTS) rounding method.

Possible values are:

zero

round towards 0

inf

round away from 0

down

round towards -infinity

up

round towards +infinity

near

round to nearest

The default is near.

eof_action

Action performed when reading the last frame.

Possible values are:

round

Use same timestamp rounding method as used for other frames.

pass

Pass through last frame if input duration has not been reached yet.

The default is round.

Alternatively, the options can be specified as a flat string: fps[:start_time[:round]].

See also the setpts filter.

38.62.1 Examples# TOC

A typical usage in order to set the fps to 25:

fps=fps=25

Sets the fps to 24, using abbreviation and rounding method to round to nearest:

fps=fps=film:round=near

38.63 framepack# TOC

Pack two different video streams into a stereoscopic video, setting proper metadata on supported codecs.
The two views should have the same size and framerate and processing will stop when the shorter video
ends. Please note that you may conveniently adjust view properties with the scale and fps filters.

It accepts the following parameters:

format

The desired packing format. Supported values are:

sbs

The views are next to each other (default).

tab

The views are on top of each other.

lines

The views are packed by line.

columns

The views are packed by column.

frameseq

The views are temporally interleaved.

Some examples:

Convert left and right views into a frame-sequential video
ffmpeg -i LEFT -i RIGHT -filter_complex framepack=frameseq OUTPUT

Convert views into a side-by-side video with the same output resolution as the input
ffmpeg -i LEFT -i RIGHT -filter_complex [0:v]scale=w=iw/2[left],[1:v]scale=w=iw/2[right],[left][right]framepack=sbs OUTPUT

38.64 framerate# TOC

Change the frame rate by interpolating new video output frames from the source frames.

This filter is not designed to function correctly with interlaced media. If you wish to change the frame rate
of interlaced media then you are required to deinterlace before this filter and re-interlace after this filter.

A description of the accepted options follows.

fps

Specify the output frames per second. This option can also be specified as a value alone. The default
is 50.

interp_start

Specify the start of a range where the output frame will be created as a linear interpolation of two
frames. The range is [0-255], the default is 15.

interp_end

Specify the end of a range where the output frame will be created as a linear interpolation of two
frames. The range is [0-255], the default is 240.

scene

Specify the level at which a scene change is detected as a value between 0 and 100 to indicate a new
scene; a low value reflects a low probability for the current frame to introduce a new scene, while a
higher value means the current frame is more likely to be one. The default is 7.

flags

Specify flags influencing the filter process.

Available value for flags is:

scene_change_detect, scd

Enable scene change detection using the value of the option scene. This flag is enabled by
default.

38.65 framestep# TOC

Select one frame every N-th frame.

This filter accepts the following option:

step

Select frame after every step frames. Allowed values are positive integers higher than 0. Default
value is 1.

38.66 frei0r# TOC

Apply a frei0r effect to the input video.

To enable the compilation of this filter, you need to install the frei0r header and configure FFmpeg with
--enable-frei0r.

It accepts the following parameters:

filter_name

The name of the frei0r effect to load. If the environment variable FREI0R_PATH is defined, the
frei0r effect is searched for in each of the directories specified by the colon-separated list in
FREI0R_PATH. Otherwise, the standard frei0r paths are searched, in this order:
HOME/.frei0r-1/lib/, /usr/local/lib/frei0r-1/, /usr/lib/frei0r-1/.

filter_params

A ’|’-separated list of parameters to pass to the frei0r effect.

A frei0r effect parameter can be a boolean (its value is either "y" or "n"), a double, a color (specified as
R/G/B, where R, G, and B are floating point numbers between 0.0 and 1.0, inclusive) or by a color
description specified in the "Color" section in the ffmpeg-utils manual), a position (specified as X/Y, where
X and Y are floating point numbers) and/or a string.

The number and types of parameters depend on the loaded effect. If an effect parameter is not specified,
the default value is set.

38.66.1 Examples# TOC

Apply the distort0r effect, setting the first two double parameters:

frei0r=filter_name=distort0r:filter_params=0.5|0.01

Apply the colordistance effect, taking a color as the first parameter:

frei0r=colordistance:0.2/0.3/0.4
frei0r=colordistance:violet
frei0r=colordistance:0x112233

Apply the perspective effect, specifying the top left and top right image positions:

frei0r=perspective:0.2/0.2|0.8/0.2

For more information, see http://frei0r.dyne.org

38.67 fspp# TOC

Apply fast and simple postprocessing. It is a faster version of spp.

It splits (I)DCT into horizontal/vertical passes. Unlike the simple post- processing filter, one of them is
performed once per block, not per pixel. This allows for much higher speed.

The filter accepts the following options:

quality

Set quality. This option defines the number of levels for averaging. It accepts an integer in the range
4-5. Default value is 4.

qp

Force a constant quantization parameter. It accepts an integer in range 0-63. If not set, the filter will
use the QP from the video stream (if available).

strength

Set filter strength. It accepts an integer in range -15 to 32. Lower values mean more details but also
more artifacts, while higher values make the image smoother but also blurrier. Default value is 0 â
PSNR optimal.

use_bframe_qp

Enable the use of the QP from the B-Frames if set to 1. Using this option may cause flicker since the
B-Frames have often larger QP. Default is 0 (not enabled).

38.68 gblur# TOC

Apply Gaussian blur filter.

http://frei0r.dyne.org/

The filter accepts the following options:

sigma

Set horizontal sigma, standard deviation of Gaussian blur. Default is 0.5.

steps

Set number of steps for Gaussian approximation. Defauls is 1.

planes

Set which planes to filter. By default all planes are filtered.

sigmaV

Set vertical sigma, if negative it will be same as sigma. Default is -1.

38.69 geq# TOC

The filter accepts the following options:

lum_expr, lum

Set the luminance expression.

cb_expr, cb

Set the chrominance blue expression.

cr_expr, cr

Set the chrominance red expression.

alpha_expr, a

Set the alpha expression.

red_expr, r

Set the red expression.

green_expr, g

Set the green expression.

blue_expr, b

Set the blue expression.

The colorspace is selected according to the specified options. If one of the lum_expr, cb_expr, or
cr_expr options is specified, the filter will automatically select a YCbCr colorspace. If one of the
red_expr, green_expr, or blue_expr options is specified, it will select an RGB colorspace.

If one of the chrominance expression is not defined, it falls back on the other one. If no alpha expression is
specified it will evaluate to opaque value. If none of chrominance expressions are specified, they will
evaluate to the luminance expression.

The expressions can use the following variables and functions:

N

The sequential number of the filtered frame, starting from 0.

X
Y

The coordinates of the current sample.

W
H

The width and height of the image.

SW
SH

Width and height scale depending on the currently filtered plane. It is the ratio between the
corresponding luma plane number of pixels and the current plane ones. E.g. for YUV4:2:0 the values
are 1,1 for the luma plane, and 0.5,0.5 for chroma planes.

T

Time of the current frame, expressed in seconds.

p(x, y)

Return the value of the pixel at location (x,y) of the current plane.

lum(x, y)

Return the value of the pixel at location (x,y) of the luminance plane.

cb(x, y)

Return the value of the pixel at location (x,y) of the blue-difference chroma plane. Return 0 if there is
no such plane.

cr(x, y)

Return the value of the pixel at location (x,y) of the red-difference chroma plane. Return 0 if there is
no such plane.

r(x, y)
g(x, y)
b(x, y)

Return the value of the pixel at location (x,y) of the red/green/blue component. Return 0 if there is no
such component.

alpha(x, y)

Return the value of the pixel at location (x,y) of the alpha plane. Return 0 if there is no such plane.

For functions, if x and y are outside the area, the value will be automatically clipped to the closer edge.

38.69.1 Examples# TOC

Flip the image horizontally:

geq=p(W-X\,Y)

Generate a bidimensional sine wave, with angle PI/3 and a wavelength of 100 pixels:

geq=128 + 100*sin(2*(PI/100)*(cos(PI/3)*(X-50*T) + sin(PI/3)*Y)):128:128

Generate a fancy enigmatic moving light:

nullsrc=s=256x256,geq=random(1)/hypot(X-cos(N*0.07)*W/2-W/2\,Y-sin(N*0.09)*H/2-H/2)^2*1000000*sin(N*0.02):128:128

Generate a quick emboss effect:

format=gray,geq=lum_expr=’(p(X,Y)+(256-p(X-4,Y-4)))/2’

Modify RGB components depending on pixel position:

geq=r=’X/W*r(X,Y)’:g=’(1-X/W)*g(X,Y)’:b=’(H-Y)/H*b(X,Y)’

Create a radial gradient that is the same size as the input (also see the vignette filter):

geq=lum=255*gauss((X/W-0.5)*3)*gauss((Y/H-0.5)*3)/gauss(0)/gauss(0),format=gray

38.70 gradfun# TOC

Fix the banding artifacts that are sometimes introduced into nearly flat regions by truncation to 8-bit color
depth. Interpolate the gradients that should go where the bands are, and dither them.

It is designed for playback only. Do not use it prior to lossy compression, because compression tends to
lose the dither and bring back the bands.

It accepts the following parameters:

strength

The maximum amount by which the filter will change any one pixel. This is also the threshold for
detecting nearly flat regions. Acceptable values range from .51 to 64; the default value is 1.2.
Out-of-range values will be clipped to the valid range.

radius

The neighborhood to fit the gradient to. A larger radius makes for smoother gradients, but also
prevents the filter from modifying the pixels near detailed regions. Acceptable values are 8-32; the
default value is 16. Out-of-range values will be clipped to the valid range.

Alternatively, the options can be specified as a flat string: strength[:radius]

38.70.1 Examples# TOC

Apply the filter with a 3.5 strength and radius of 8:

gradfun=3.5:8

Specify radius, omitting the strength (which will fall-back to the default value):

gradfun=radius=8

38.71 haldclut# TOC

Apply a Hald CLUT to a video stream.

First input is the video stream to process, and second one is the Hald CLUT. The Hald CLUT input can be
a simple picture or a complete video stream.

The filter accepts the following options:

shortest

Force termination when the shortest input terminates. Default is 0.

repeatlast

Continue applying the last CLUT after the end of the stream. A value of 0 disable the filter after the
last frame of the CLUT is reached. Default is 1.

haldclut also has the same interpolation options as lut3d (both filters share the same internals).

More information about the Hald CLUT can be found on Eskil Steenberg’s website (Hald CLUT author)
at http://www.quelsolaar.com/technology/clut.html.

38.71.1 Workflow examples# TOC

38.71.1.1 Hald CLUT video stream# TOC

Generate an identity Hald CLUT stream altered with various effects:

ffmpeg -f lavfi -i haldclutsrc=8 -vf "hue=H=2*PI*t:s=sin(2*PI*t)+1, curves=cross_process" -t 10 -c:v ffv1 clut.nut

Note: make sure you use a lossless codec.

Then use it with haldclut to apply it on some random stream:

ffmpeg -f lavfi -i mandelbrot -i clut.nut -filter_complex ’[0][1] haldclut’ -t 20 mandelclut.mkv

The Hald CLUT will be applied to the 10 first seconds (duration of clut.nut), then the latest picture of
that CLUT stream will be applied to the remaining frames of the mandelbrot stream.

38.71.1.2 Hald CLUT with preview# TOC

A Hald CLUT is supposed to be a squared image of Level*Level*Level by
Level*Level*Level pixels. For a given Hald CLUT, FFmpeg will select the biggest possible square
starting at the top left of the picture. The remaining padding pixels (bottom or right) will be ignored. This
area can be used to add a preview of the Hald CLUT.

Typically, the following generated Hald CLUT will be supported by the haldclut filter:

ffmpeg -f lavfi -i haldclutsrc=8 -vf "
 pad=iw+320 [padded_clut];
 smptebars=s=320x256, split [a][b];
 [padded_clut][a] overlay=W-320:h, curves=color_negative [main];
 [main][b] overlay=W-320" -frames:v 1 clut.png

It contains the original and a preview of the effect of the CLUT: SMPTE color bars are displayed on the
right-top, and below the same color bars processed by the color changes.

Then, the effect of this Hald CLUT can be visualized with:

ffplay input.mkv -vf "movie=clut.png, [in] haldclut"

http://www.quelsolaar.com/technology/clut.html

38.72 hflip# TOC

Flip the input video horizontally.

For example, to horizontally flip the input video with ffmpeg:

ffmpeg -i in.avi -vf "hflip" out.avi

38.73 histeq# TOC

This filter applies a global color histogram equalization on a per-frame basis.

It can be used to correct video that has a compressed range of pixel intensities. The filter redistributes the
pixel intensities to equalize their distribution across the intensity range. It may be viewed as an
"automatically adjusting contrast filter". This filter is useful only for correcting degraded or poorly
captured source video.

The filter accepts the following options:

strength

Determine the amount of equalization to be applied. As the strength is reduced, the distribution of
pixel intensities more-and-more approaches that of the input frame. The value must be a float number
in the range [0,1] and defaults to 0.200.

intensity

Set the maximum intensity that can generated and scale the output values appropriately. The strength
should be set as desired and then the intensity can be limited if needed to avoid washing-out. The
value must be a float number in the range [0,1] and defaults to 0.210.

antibanding

Set the antibanding level. If enabled the filter will randomly vary the luminance of output pixels by a
small amount to avoid banding of the histogram. Possible values are none, weak or strong. It
defaults to none.

38.74 histogram# TOC

Compute and draw a color distribution histogram for the input video.

The computed histogram is a representation of the color component distribution in an image.

Standard histogram displays the color components distribution in an image. Displays color graph for each
color component. Shows distribution of the Y, U, V, A or R, G, B components, depending on input
format, in the current frame. Below each graph a color component scale meter is shown.

The filter accepts the following options:

level_height

Set height of level. Default value is 200. Allowed range is [50, 2048].

scale_height

Set height of color scale. Default value is 12. Allowed range is [0, 40].

display_mode

Set display mode. It accepts the following values:

‘stack’

Per color component graphs are placed below each other.

‘parade’

Per color component graphs are placed side by side.

‘overlay’

Presents information identical to that in the parade, except that the graphs representing color
components are superimposed directly over one another.

Default is stack.

levels_mode

Set mode. Can be either linear, or logarithmic. Default is linear.

components

Set what color components to display. Default is 7.

fgopacity

Set foreground opacity. Default is 0.7.

bgopacity

Set background opacity. Default is 0.5.

38.74.1 Examples# TOC

Calculate and draw histogram:

ffplay -i input -vf histogram

38.75 hqdn3d# TOC

This is a high precision/quality 3d denoise filter. It aims to reduce image noise, producing smooth images
and making still images really still. It should enhance compressibility.

It accepts the following optional parameters:

luma_spatial

A non-negative floating point number which specifies spatial luma strength. It defaults to 4.0.

chroma_spatial

A non-negative floating point number which specifies spatial chroma strength. It defaults to
3.0*luma_spatial/4.0.

luma_tmp

A floating point number which specifies luma temporal strength. It defaults to 6.0*luma_spatial/4.0.

chroma_tmp

A floating point number which specifies chroma temporal strength. It defaults to
luma_tmp*chroma_spatial/luma_spatial.

38.76 hwdownload# TOC

Download hardware frames to system memory.

The input must be in hardware frames, and the output a non-hardware format. Not all formats will be
supported on the output - it may be necessary to insert an additional format filter immediately following
in the graph to get the output in a supported format.

38.77 hwmap# TOC

Map hardware frames to system memory or to another device.

This filter has several different modes of operation; which one is used depends on the input and output
formats:

Hardware frame input, normal frame output

Map the input frames to system memory and pass them to the output. If the original hardware frame
is later required (for example, after overlaying something else on part of it), the hwmap filter can be
used again in the next mode to retrieve it.

Normal frame input, hardware frame output

If the input is actually a software-mapped hardware frame, then unmap it - that is, return the original
hardware frame.

Otherwise, a device must be provided. Create new hardware surfaces on that device for the output,
then map them back to the software format at the input and give those frames to the preceding filter.
This will then act like the hwupload filter, but may be able to avoid an additional copy when the
input is already in a compatible format.

Hardware frame input and output

A device must be supplied for the output, either directly or with the derive_device option. The
input and output devices must be of different types and compatible - the exact meaning of this is
system-dependent, but typically it means that they must refer to the same underlying hardware
context (for example, refer to the same graphics card).

If the input frames were originally created on the output device, then unmap to retrieve the original
frames.

Otherwise, map the frames to the output device - create new hardware frames on the output
corresponding to the frames on the input.

The following additional parameters are accepted:

mode

Set the frame mapping mode. Some combination of:

read

The mapped frame should be readable.

write

The mapped frame should be writeable.

overwrite

The mapping will always overwrite the entire frame.

This may improve performance in some cases, as the original contents of the frame need not be
loaded.

direct

The mapping must not involve any copying.

Indirect mappings to copies of frames are created in some cases where either direct mapping is
not possible or it would have unexpected properties. Setting this flag ensures that the mapping is
direct and will fail if that is not possible.

Defaults to read+write if not specified.

derive_device type

Rather than using the device supplied at initialisation, instead derive a new device of type type from
the device the input frames exist on.

reverse

In a hardware to hardware mapping, map in reverse - create frames in the sink and map them back to
the source. This may be necessary in some cases where a mapping in one direction is required but
only the opposite direction is supported by the devices being used.

This option is dangerous - it may break the preceding filter in undefined ways if there are any
additional constraints on that filter’s output. Do not use it without fully understanding the
implications of its use.

38.78 hwupload# TOC

Upload system memory frames to hardware surfaces.

The device to upload to must be supplied when the filter is initialised. If using ffmpeg, select the
appropriate device with the -filter_hw_device option.

38.79 hwupload_cuda# TOC

Upload system memory frames to a CUDA device.

It accepts the following optional parameters:

device

The number of the CUDA device to use

38.80 hqx# TOC

Apply a high-quality magnification filter designed for pixel art. This filter was originally created by
Maxim Stepin.

It accepts the following option:

n

Set the scaling dimension: 2 for hq2x, 3 for hq3x and 4 for hq4x. Default is 3.

38.81 hstack# TOC

Stack input videos horizontally.

All streams must be of same pixel format and of same height.

Note that this filter is faster than using overlay and pad filter to create same output.

The filter accept the following option:

inputs

Set number of input streams. Default is 2.

shortest

If set to 1, force the output to terminate when the shortest input terminates. Default value is 0.

38.82 hue# TOC

Modify the hue and/or the saturation of the input.

It accepts the following parameters:

h

Specify the hue angle as a number of degrees. It accepts an expression, and defaults to "0".

s

Specify the saturation in the [-10,10] range. It accepts an expression and defaults to "1".

H

Specify the hue angle as a number of radians. It accepts an expression, and defaults to "0".

b

Specify the brightness in the [-10,10] range. It accepts an expression and defaults to "0".

h and H are mutually exclusive, and can’t be specified at the same time.

The b, h, H and s option values are expressions containing the following constants:

n

frame count of the input frame starting from 0

pts

presentation timestamp of the input frame expressed in time base units

r

frame rate of the input video, NAN if the input frame rate is unknown

t

timestamp expressed in seconds, NAN if the input timestamp is unknown

tb

time base of the input video

38.82.1 Examples# TOC

Set the hue to 90 degrees and the saturation to 1.0:

hue=h=90:s=1

Same command but expressing the hue in radians:

hue=H=PI/2:s=1

Rotate hue and make the saturation swing between 0 and 2 over a period of 1 second:

hue="H=2*PI*t: s=sin(2*PI*t)+1"

Apply a 3 seconds saturation fade-in effect starting at 0:

hue="s=min(t/3\,1)"

The general fade-in expression can be written as:

hue="s=min(0\, max((t-START)/DURATION\, 1))"

Apply a 3 seconds saturation fade-out effect starting at 5 seconds:

hue="s=max(0\, min(1\, (8-t)/3))"

The general fade-out expression can be written as:

hue="s=max(0\, min(1\, (START+DURATION-t)/DURATION))"

38.82.2 Commands# TOC

This filter supports the following commands:

b
s
h
H

Modify the hue and/or the saturation and/or brightness of the input video. The command accepts the
same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

38.83 hysteresis# TOC

Grow first stream into second stream by connecting components. This makes it possible to build more
robust edge masks.

This filter accepts the following options:

planes

Set which planes will be processed as bitmap, unprocessed planes will be copied from first stream.
By default value 0xf, all planes will be processed.

threshold

Set threshold which is used in filtering. If pixel component value is higher than this value filter
algorithm for connecting components is activated. By default value is 0.

38.84 idet# TOC

Detect video interlacing type.

This filter tries to detect if the input frames are interlaced, progressive, top or bottom field first. It will also
try to detect fields that are repeated between adjacent frames (a sign of telecine).

Single frame detection considers only immediately adjacent frames when classifying each frame. Multiple
frame detection incorporates the classification history of previous frames.

The filter will log these metadata values:

single.current_frame

Detected type of current frame using single-frame detection. One of: “tff” (top field first), “bff”
(bottom field first), “progressive”, or “undetermined”

single.tff

Cumulative number of frames detected as top field first using single-frame detection.

multiple.tff

Cumulative number of frames detected as top field first using multiple-frame detection.

single.bff

Cumulative number of frames detected as bottom field first using single-frame detection.

multiple.current_frame

Detected type of current frame using multiple-frame detection. One of: “tff” (top field first), “bff”
(bottom field first), “progressive”, or “undetermined”

multiple.bff

Cumulative number of frames detected as bottom field first using multiple-frame detection.

single.progressive

Cumulative number of frames detected as progressive using single-frame detection.

multiple.progressive

Cumulative number of frames detected as progressive using multiple-frame detection.

single.undetermined

Cumulative number of frames that could not be classified using single-frame detection.

multiple.undetermined

Cumulative number of frames that could not be classified using multiple-frame detection.

repeated.current_frame

Which field in the current frame is repeated from the last. One of “neither”, “top”, or “bottom”.

repeated.neither

Cumulative number of frames with no repeated field.

repeated.top

Cumulative number of frames with the top field repeated from the previous frame’s top field.

repeated.bottom

Cumulative number of frames with the bottom field repeated from the previous frame’s bottom field.

The filter accepts the following options:

intl_thres

Set interlacing threshold.

prog_thres

Set progressive threshold.

rep_thres

Threshold for repeated field detection.

half_life

Number of frames after which a given frame’s contribution to the statistics is halved (i.e., it
contributes only 0.5 to its classification). The default of 0 means that all frames seen are given full
weight of 1.0 forever.

analyze_interlaced_flag

When this is not 0 then idet will use the specified number of frames to determine if the interlaced flag
is accurate, it will not count undetermined frames. If the flag is found to be accurate it will be used
without any further computations, if it is found to be inaccurate it will be cleared without any further
computations. This allows inserting the idet filter as a low computational method to clean up the
interlaced flag

38.85 il# TOC

Deinterleave or interleave fields.

This filter allows one to process interlaced images fields without deinterlacing them. Deinterleaving splits
the input frame into 2 fields (so called half pictures). Odd lines are moved to the top half of the output
image, even lines to the bottom half. You can process (filter) them independently and then re-interleave
them.

The filter accepts the following options:

luma_mode, l
chroma_mode, c
alpha_mode, a

Available values for luma_mode, chroma_mode and alpha_mode are:

‘none’

Do nothing.

‘deinterleave, d’

Deinterleave fields, placing one above the other.

‘interleave, i’

Interleave fields. Reverse the effect of deinterleaving.

Default value is none.

luma_swap, ls
chroma_swap, cs
alpha_swap, as

Swap luma/chroma/alpha fields. Exchange even & odd lines. Default value is 0.

38.86 inflate# TOC

Apply inflate effect to the video.

This filter replaces the pixel by the local(3x3) average by taking into account only values higher than the
pixel.

It accepts the following options:

threshold0
threshold1
threshold2
threshold3

Limit the maximum change for each plane, default is 65535. If 0, plane will remain unchanged.

38.87 interlace# TOC

Simple interlacing filter from progressive contents. This interleaves upper (or lower) lines from odd
frames with lower (or upper) lines from even frames, halving the frame rate and preserving image height.

 Original Original New Frame
 Frame ’j’ Frame ’j+1’ (tff)
 ========== =========== ==================
 Line 0 --------------------> Frame ’j’ Line 0
 Line 1 Line 1 ----> Frame ’j+1’ Line 1
 Line 2 ---------------------> Frame ’j’ Line 2
 Line 3 Line 3 ----> Frame ’j+1’ Line 3

New Frame + 1 will be generated by Frame ’j+2’ and Frame ’j+3’ and so on

It accepts the following optional parameters:

scan

This determines whether the interlaced frame is taken from the even (tff - default) or odd (bff) lines
of the progressive frame.

lowpass

Vertical lowpass filter to avoid twitter interlacing and reduce moire patterns.

‘0, off’

Disable vertical lowpass filter

‘1, linear’

Enable linear filter (default)

‘2, complex’

Enable complex filter. This will slightly less reduce twitter and moire but better retain detail and
subjective sharpness impression.

38.88 kerndeint# TOC

Deinterlace input video by applying Donald Graft’s adaptive kernel deinterling. Work on interlaced parts
of a video to produce progressive frames.

The description of the accepted parameters follows.

thresh

Set the threshold which affects the filter’s tolerance when determining if a pixel line must be
processed. It must be an integer in the range [0,255] and defaults to 10. A value of 0 will result in applying
the process on every pixels.

map

Paint pixels exceeding the threshold value to white if set to 1. Default is 0.

order

Set the fields order. Swap fields if set to 1, leave fields alone if 0. Default is 0.

sharp

Enable additional sharpening if set to 1. Default is 0.

twoway

Enable twoway sharpening if set to 1. Default is 0.

38.88.1 Examples# TOC

Apply default values:

kerndeint=thresh=10:map=0:order=0:sharp=0:twoway=0

Enable additional sharpening:

kerndeint=sharp=1

Paint processed pixels in white:

kerndeint=map=1

38.89 lenscorrection# TOC

Correct radial lens distortion

This filter can be used to correct for radial distortion as can result from the use of wide angle lenses, and
thereby re-rectify the image. To find the right parameters one can use tools available for example as part
of opencv or simply trial-and-error. To use opencv use the calibration sample (under samples/cpp) from
the opencv sources and extract the k1 and k2 coefficients from the resulting matrix.

Note that effectively the same filter is available in the open-source tools Krita and Digikam from the KDE
project.

In contrast to the vignette filter, which can also be used to compensate lens errors, this filter corrects the
distortion of the image, whereas vignette corrects the brightness distribution, so you may want to use both
filters together in certain cases, though you will have to take care of ordering, i.e. whether vignetting
should be applied before or after lens correction.

38.89.1 Options# TOC

The filter accepts the following options:

cx

Relative x-coordinate of the focal point of the image, and thereby the center of the distortion. This
value has a range [0,1] and is expressed as fractions of the image width.

cy

Relative y-coordinate of the focal point of the image, and thereby the center of the distortion. This
value has a range [0,1] and is expressed as fractions of the image height.

k1

Coefficient of the quadratic correction term. 0.5 means no correction.

k2

Coefficient of the double quadratic correction term. 0.5 means no correction.

The formula that generates the correction is:

r_src = r_tgt * (1 + k1 * (r_tgt / r_0)^2 + k2 * (r_tgt / r_0)^4)

where r_0 is halve of the image diagonal and r_src and r_tgt are the distances from the focal point in the
source and target images, respectively.

38.90 libvmaf# TOC

Obtain the VMAF (Video Multi-Method Assessment Fusion) score between two input videos.

The obtained VMAF score is printed through the logging system.

It requires Netflix’s vmaf library (libvmaf) as a pre-requisite. After installing the library it can be enabled
using: ./configure --enable-libvmaf. If no model path is specified it uses the default model:
vmaf_v0.6.1.pkl.

The filter has following options:

model_path

Set the model path which is to be used for SVM. Default value: "vmaf_v0.6.1.pkl"

log_path

Set the file path to be used to store logs.

log_fmt

Set the format of the log file (xml or json).

enable_transform

Enables transform for computing vmaf.

phone_model

Invokes the phone model which will generate VMAF scores higher than in the regular model, which
is more suitable for laptop, TV, etc. viewing conditions.

psnr

Enables computing psnr along with vmaf.

ssim

Enables computing ssim along with vmaf.

ms_ssim

Enables computing ms_ssim along with vmaf.

pool

Set the pool method (mean, min or harmonic mean) to be used for computing vmaf.

This filter also supports the framesync options.

On the below examples the input file main.mpg being processed is compared with the reference file
ref.mpg.

ffmpeg -i main.mpg -i ref.mpg -lavfi libvmaf -f null -

Example with options:

ffmpeg -i main.mpg -i ref.mpg -lavfi libvmaf="psnr=1:enable-transform=1" -f null -

38.91 limiter# TOC

Limits the pixel components values to the specified range [min, max].

The filter accepts the following options:

min

Lower bound. Defaults to the lowest allowed value for the input.

max

Upper bound. Defaults to the highest allowed value for the input.

planes

Specify which planes will be processed. Defaults to all available.

38.92 loop# TOC

Loop video frames.

The filter accepts the following options:

loop

Set the number of loops. Setting this value to -1 will result in infinite loops. Default is 0.

size

Set maximal size in number of frames. Default is 0.

start

Set first frame of loop. Default is 0.

38.93 lut3d# TOC

Apply a 3D LUT to an input video.

The filter accepts the following options:

file

Set the 3D LUT file name.

Currently supported formats:

‘3dl’

AfterEffects

‘cube’

Iridas

‘dat’

DaVinci

‘m3d’

Pandora

interp

Select interpolation mode.

Available values are:

‘nearest’

Use values from the nearest defined point.

‘trilinear’

Interpolate values using the 8 points defining a cube.

‘tetrahedral’

Interpolate values using a tetrahedron.

This filter also supports the framesync options.

38.94 lumakey# TOC

Turn certain luma values into transparency.

The filter accepts the following options:

threshold

Set the luma which will be used as base for transparency. Default value is 0.

tolerance

Set the range of luma values to be keyed out. Default value is 0.

softness

Set the range of softness. Default value is 0. Use this to control gradual transition from zero to full
transparency.

38.95 lut, lutrgb, lutyuv# TOC

Compute a look-up table for binding each pixel component input value to an output value, and apply it to
the input video.

lutyuv applies a lookup table to a YUV input video, lutrgb to an RGB input video.

These filters accept the following parameters:

c0

set first pixel component expression

c1

set second pixel component expression

c2

set third pixel component expression

c3

set fourth pixel component expression, corresponds to the alpha component

r

set red component expression

g

set green component expression

b

set blue component expression

a

alpha component expression

y

set Y/luminance component expression

u

set U/Cb component expression

v

set V/Cr component expression

Each of them specifies the expression to use for computing the lookup table for the corresponding pixel
component values.

The exact component associated to each of the c* options depends on the format in input.

The lut filter requires either YUV or RGB pixel formats in input, lutrgb requires RGB pixel formats in
input, and lutyuv requires YUV.

The expressions can contain the following constants and functions:

w
h

The input width and height.

val

The input value for the pixel component.

clipval

The input value, clipped to the minval-maxval range.

maxval

The maximum value for the pixel component.

minval

The minimum value for the pixel component.

negval

The negated value for the pixel component value, clipped to the minval-maxval range; it corresponds
to the expression "maxval-clipval+minval".

clip(val)

The computed value in val, clipped to the minval-maxval range.

gammaval(gamma)

The computed gamma correction value of the pixel component value, clipped to the minval-maxval

range. It corresponds to the expression
"pow((clipval-minval)/(maxval-minval)\,gamma)*(maxval-minval)+minval"

All expressions default to "val".

38.95.1 Examples# TOC

Negate input video:

lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"

The above is the same as:

lutrgb="r=negval:g=negval:b=negval"
lutyuv="y=negval:u=negval:v=negval"

Negate luminance:

lutyuv=y=negval

Remove chroma components, turning the video into a graytone image:

lutyuv="u=128:v=128"

Apply a luma burning effect:

lutyuv="y=2*val"

Remove green and blue components:

lutrgb="g=0:b=0"

Set a constant alpha channel value on input:

format=rgba,lutrgb=a="maxval-minval/2"

Correct luminance gamma by a factor of 0.5:

lutyuv=y=gammaval(0.5)

Discard least significant bits of luma:

lutyuv=y=’bitand(val, 128+64+32)’

Technicolor like effect:

lutyuv=u=’(val-maxval/2)*2+maxval/2’:v=’(val-maxval/2)*2+maxval/2’

38.96 lut2, tlut2# TOC

The lut2 filter takes two input streams and outputs one stream.

The tlut2 (time lut2) filter takes two consecutive frames from one single stream.

This filter accepts the following parameters:

c0

set first pixel component expression

c1

set second pixel component expression

c2

set third pixel component expression

c3

set fourth pixel component expression, corresponds to the alpha component

Each of them specifies the expression to use for computing the lookup table for the corresponding pixel
component values.

The exact component associated to each of the c* options depends on the format in inputs.

The expressions can contain the following constants:

w
h

The input width and height.

x

The first input value for the pixel component.

y

The second input value for the pixel component.

bdx

The first input video bit depth.

bdy

The second input video bit depth.

All expressions default to "x".

38.96.1 Examples# TOC

Highlight differences between two RGB video streams:

lut2=’ifnot(x-y,0,pow(2,bdx)-1):ifnot(x-y,0,pow(2,bdx)-1):ifnot(x-y,0,pow(2,bdx)-1)’

Highlight differences between two YUV video streams:

lut2=’ifnot(x-y,0,pow(2,bdx)-1):ifnot(x-y,pow(2,bdx-1),pow(2,bdx)-1):ifnot(x-y,pow(2,bdx-1),pow(2,bdx)-1)’

Show max difference between two video streams:

lut2=’if(lt(x,y),0,if(gt(x,y),pow(2,bdx)-1,pow(2,bdx-1))):if(lt(x,y),0,if(gt(x,y),pow(2,bdx)-1,pow(2,bdx-1))):if(lt(x,y),0,if(gt(x,y),pow(2,bdx)-1,pow(2,bdx-1)))’

38.97 maskedclamp# TOC

Clamp the first input stream with the second input and third input stream.

Returns the value of first stream to be between second input stream - undershoot and third input stream
+ overshoot.

This filter accepts the following options:

undershoot

Default value is 0.

overshoot

Default value is 0.

planes

Set which planes will be processed as bitmap, unprocessed planes will be copied from first stream.
By default value 0xf, all planes will be processed.

38.98 maskedmerge# TOC

Merge the first input stream with the second input stream using per pixel weights in the third input stream.

A value of 0 in the third stream pixel component means that pixel component from first stream is returned
unchanged, while maximum value (eg. 255 for 8-bit videos) means that pixel component from second
stream is returned unchanged. Intermediate values define the amount of merging between both input
stream’s pixel components.

This filter accepts the following options:

planes

Set which planes will be processed as bitmap, unprocessed planes will be copied from first stream.
By default value 0xf, all planes will be processed.

38.99 mcdeint# TOC

Apply motion-compensation deinterlacing.

It needs one field per frame as input and must thus be used together with yadif=1/3 or equivalent.

This filter accepts the following options:

mode

Set the deinterlacing mode.

It accepts one of the following values:

‘fast’
‘medium’
‘slow’

use iterative motion estimation

‘extra_slow’

like ‘slow’, but use multiple reference frames.

Default value is ‘fast’.

parity

Set the picture field parity assumed for the input video. It must be one of the following values:

‘0, tff’

assume top field first

‘1, bff’

assume bottom field first

Default value is ‘bff’.

qp

Set per-block quantization parameter (QP) used by the internal encoder.

Higher values should result in a smoother motion vector field but less optimal individual vectors.
Default value is 1.

38.100 mergeplanes# TOC

Merge color channel components from several video streams.

The filter accepts up to 4 input streams, and merge selected input planes to the output video.

This filter accepts the following options:

mapping

Set input to output plane mapping. Default is 0.

The mappings is specified as a bitmap. It should be specified as a hexadecimal number in the form
0xAa[Bb[Cc[Dd]]]. ’Aa’ describes the mapping for the first plane of the output stream. ’A’ sets the
number of the input stream to use (from 0 to 3), and ’a’ the plane number of the corresponding input
to use (from 0 to 3). The rest of the mappings is similar, ’Bb’ describes the mapping for the output
stream second plane, ’Cc’ describes the mapping for the output stream third plane and ’Dd’ describes
the mapping for the output stream fourth plane.

format

Set output pixel format. Default is yuva444p.

38.100.1 Examples# TOC

Merge three gray video streams of same width and height into single video stream:

[a0][a1][a2]mergeplanes=0x001020:yuv444p

Merge 1st yuv444p stream and 2nd gray video stream into yuva444p video stream:

[a0][a1]mergeplanes=0x00010210:yuva444p

Swap Y and A plane in yuva444p stream:

format=yuva444p,mergeplanes=0x03010200:yuva444p

Swap U and V plane in yuv420p stream:

format=yuv420p,mergeplanes=0x000201:yuv420p

Cast a rgb24 clip to yuv444p:

format=rgb24,mergeplanes=0x000102:yuv444p

38.101 mestimate# TOC

Estimate and export motion vectors using block matching algorithms. Motion vectors are stored in frame
side data to be used by other filters.

This filter accepts the following options:

method

Specify the motion estimation method. Accepts one of the following values:

‘esa’

Exhaustive search algorithm.

‘tss’

Three step search algorithm.

‘tdls’

Two dimensional logarithmic search algorithm.

‘ntss’

New three step search algorithm.

‘fss’

Four step search algorithm.

‘ds’

Diamond search algorithm.

‘hexbs’

Hexagon-based search algorithm.

‘epzs’

Enhanced predictive zonal search algorithm.

‘umh’

Uneven multi-hexagon search algorithm.

Default value is ‘esa’.

mb_size

Macroblock size. Default 16.

search_param

Search parameter. Default 7.

38.102 midequalizer# TOC

Apply Midway Image Equalization effect using two video streams.

Midway Image Equalization adjusts a pair of images to have the same histogram, while maintaining their
dynamics as much as possible. It’s useful for e.g. matching exposures from a pair of stereo cameras.

This filter has two inputs and one output, which must be of same pixel format, but may be of different
sizes. The output of filter is first input adjusted with midway histogram of both inputs.

This filter accepts the following option:

planes

Set which planes to process. Default is 15, which is all available planes.

38.103 minterpolate# TOC

Convert the video to specified frame rate using motion interpolation.

This filter accepts the following options:

fps

Specify the output frame rate. This can be rational e.g. 60000/1001. Frames are dropped if fps is
lower than source fps. Default 60.

mi_mode

Motion interpolation mode. Following values are accepted:

‘dup’

Duplicate previous or next frame for interpolating new ones.

‘blend’

Blend source frames. Interpolated frame is mean of previous and next frames.

‘mci’

Motion compensated interpolation. Following options are effective when this mode is selected:

‘mc_mode’

Motion compensation mode. Following values are accepted:

‘obmc’

Overlapped block motion compensation.

‘aobmc’

Adaptive overlapped block motion compensation. Window weighting coefficients are
controlled adaptively according to the reliabilities of the neighboring motion vectors to
reduce oversmoothing.

Default mode is ‘obmc’.

‘me_mode’

Motion estimation mode. Following values are accepted:

‘bidir’

Bidirectional motion estimation. Motion vectors are estimated for each source frame
in both forward and backward directions.

‘bilat’

Bilateral motion estimation. Motion vectors are estimated directly for interpolated
frame.

Default mode is ‘bilat’.

‘me’

The algorithm to be used for motion estimation. Following values are accepted:

‘esa’

Exhaustive search algorithm.

‘tss’

Three step search algorithm.

‘tdls’

Two dimensional logarithmic search algorithm.

‘ntss’

New three step search algorithm.

‘fss’

Four step search algorithm.

‘ds’

Diamond search algorithm.

‘hexbs’

Hexagon-based search algorithm.

‘epzs’

Enhanced predictive zonal search algorithm.

‘umh’

Uneven multi-hexagon search algorithm.

Default algorithm is ‘epzs’.

‘mb_size’

Macroblock size. Default 16.

‘search_param’

Motion estimation search parameter. Default 32.

‘vsbmc’

Enable variable-size block motion compensation. Motion estimation is applied with smaller
block sizes at object boundaries in order to make the them less blur. Default is 0 (disabled).

scd

Scene change detection method. Scene change leads motion vectors to be in random direction. Scene
change detection replace interpolated frames by duplicate ones. May not be needed for other modes.
Following values are accepted:

‘none’

Disable scene change detection.

‘fdiff’

Frame difference. Corresponding pixel values are compared and if it satisfies scd_threshold

scene change is detected.

Default method is ‘fdiff’.

scd_threshold

Scene change detection threshold. Default is 5.0.

38.104 mix# TOC

Mix several video input streams into one video stream.

A description of the accepted options follows.

nb_inputs

The number of inputs. If unspecified, it defaults to 2.

weights

Specify weight of each input video stream as sequence. Each weight is separated by space.

duration

Specify how end of stream is determined.

‘longest’

The duration of the longest input. (default)

‘shortest’

The duration of the shortest input.

‘first’

The duration of the first input.

38.105 mpdecimate# TOC

Drop frames that do not differ greatly from the previous frame in order to reduce frame rate.

The main use of this filter is for very-low-bitrate encoding (e.g. streaming over dialup modem), but it
could in theory be used for fixing movies that were inverse-telecined incorrectly.

A description of the accepted options follows.

max

Set the maximum number of consecutive frames which can be dropped (if positive), or the minimum
interval between dropped frames (if negative). If the value is 0, the frame is dropped disregarding the
number of previous sequentially dropped frames.

Default value is 0.

hi
lo
frac

Set the dropping threshold values.

Values for hi and lo are for 8x8 pixel blocks and represent actual pixel value differences, so a
threshold of 64 corresponds to 1 unit of difference for each pixel, or the same spread out differently
over the block.

A frame is a candidate for dropping if no 8x8 blocks differ by more than a threshold of hi, and if no
more than frac blocks (1 meaning the whole image) differ by more than a threshold of lo.

Default value for hi is 64*12, default value for lo is 64*5, and default value for frac is 0.33.

38.106 negate# TOC

Negate input video.

It accepts an integer in input; if non-zero it negates the alpha component (if available). The default value
in input is 0.

38.107 nlmeans# TOC

Denoise frames using Non-Local Means algorithm.

Each pixel is adjusted by looking for other pixels with similar contexts. This context similarity is defined
by comparing their surrounding patches of size pxp. Patches are searched in an area of rxr around the
pixel.

Note that the research area defines centers for patches, which means some patches will be made of pixels
outside that research area.

The filter accepts the following options.

s

Set denoising strength.

p

Set patch size.

pc

Same as p but for chroma planes.

The default value is 0 and means automatic.

r

Set research size.

rc

Same as r but for chroma planes.

The default value is 0 and means automatic.

38.108 nnedi# TOC

Deinterlace video using neural network edge directed interpolation.

This filter accepts the following options:

weights

Mandatory option, without binary file filter can not work. Currently file can be found here:
https://github.com/dubhater/vapoursynth-nnedi3/blob/master/src/nnedi3_weights.bin

deint

Set which frames to deinterlace, by default it is all. Can be all or interlaced.

field

Set mode of operation.

Can be one of the following:

‘af’

Use frame flags, both fields.

‘a’

Use frame flags, single field.

‘t’

Use top field only.

‘b’

Use bottom field only.

‘tf’

Use both fields, top first.

‘bf’

Use both fields, bottom first.

planes

Set which planes to process, by default filter process all frames.

nsize

Set size of local neighborhood around each pixel, used by the predictor neural network.

Can be one of the following:

‘s8x6’
‘s16x6’
‘s32x6’
‘s48x6’
‘s8x4’
‘s16x4’
‘s32x4’

nns

Set the number of neurons in predictor neural network. Can be one of the following:

‘n16’

‘n32’
‘n64’
‘n128’
‘n256’

qual

Controls the number of different neural network predictions that are blended together to compute the
final output value. Can be fast, default or slow.

etype

Set which set of weights to use in the predictor. Can be one of the following:

‘a’

weights trained to minimize absolute error

‘s’

weights trained to minimize squared error

pscrn

Controls whether or not the prescreener neural network is used to decide which pixels should be
processed by the predictor neural network and which can be handled by simple cubic interpolation.
The prescreener is trained to know whether cubic interpolation will be sufficient for a pixel or
whether it should be predicted by the predictor nn. The computational complexity of the prescreener
nn is much less than that of the predictor nn. Since most pixels can be handled by cubic interpolation,
using the prescreener generally results in much faster processing. The prescreener is pretty accurate,
so the difference between using it and not using it is almost always unnoticeable.

Can be one of the following:

‘none’
‘original’
‘new’

Default is new.

fapprox

Set various debugging flags.

38.109 noformat# TOC

Force libavfilter not to use any of the specified pixel formats for the input to the next filter.

It accepts the following parameters:

pix_fmts

A ’|’-separated list of pixel format names, such as pix_fmts=yuv420p|monow|rgb24".

38.109.1 Examples# TOC

Force libavfilter to use a format different from yuv420p for the input to the vflip filter:

noformat=pix_fmts=yuv420p,vflip

Convert the input video to any of the formats not contained in the list:

noformat=yuv420p|yuv444p|yuv410p

38.110 noise# TOC

Add noise on video input frame.

The filter accepts the following options:

all_seed
c0_seed
c1_seed
c2_seed
c3_seed

Set noise seed for specific pixel component or all pixel components in case of all_seed. Default value
is 123457.

all_strength, alls
c0_strength, c0s
c1_strength, c1s
c2_strength, c2s
c3_strength, c3s

Set noise strength for specific pixel component or all pixel components in case all_strength. Default
value is 0. Allowed range is [0, 100].

all_flags, allf
c0_flags, c0f
c1_flags, c1f
c2_flags, c2f
c3_flags, c3f

Set pixel component flags or set flags for all components if all_flags. Available values for component
flags are:

‘a’

averaged temporal noise (smoother)

‘p’

mix random noise with a (semi)regular pattern

‘t’

temporal noise (noise pattern changes between frames)

‘u’

uniform noise (gaussian otherwise)

38.110.1 Examples# TOC

Add temporal and uniform noise to input video:

noise=alls=20:allf=t+u

38.111 normalize# TOC

Normalize RGB video (aka histogram stretching, contrast stretching). See:
https://en.wikipedia.org/wiki/Normalization_(image_processing)

For each channel of each frame, the filter computes the input range and maps it linearly to the
user-specified output range. The output range defaults to the full dynamic range from pure black to pure
white.

Temporal smoothing can be used on the input range to reduce flickering (rapid changes in brightness)
caused when small dark or bright objects enter or leave the scene. This is similar to the auto-exposure
(automatic gain control) on a video camera, and, like a video camera, it may cause a period of over- or
under-exposure of the video.

The R,G,B channels can be normalized independently, which may cause some color shifting, or linked
together as a single channel, which prevents color shifting. Linked normalization preserves hue.
Independent normalization does not, so it can be used to remove some color casts. Independent and linked
normalization can be combined in any ratio.

The normalize filter accepts the following options:

blackpt
whitept

Colors which define the output range. The minimum input value is mapped to the blackpt. The
maximum input value is mapped to the whitept. The defaults are black and white respectively.
Specifying white for blackpt and black for whitept will give color-inverted, normalized video. Shades

of grey can be used to reduce the dynamic range (contrast). Specifying saturated colors here can
create some interesting effects.

smoothing

The number of previous frames to use for temporal smoothing. The input range of each channel is
smoothed using a rolling average over the current frame and the smoothing previous frames. The
default is 0 (no temporal smoothing).

independence

Controls the ratio of independent (color shifting) channel normalization to linked (color preserving)
normalization. 0.0 is fully linked, 1.0 is fully independent. Defaults to 1.0 (fully independent).

strength

Overall strength of the filter. 1.0 is full strength. 0.0 is a rather expensive no-op. Defaults to 1.0 (full
strength).

38.111.1 Examples# TOC

Stretch video contrast to use the full dynamic range, with no temporal smoothing; may flicker depending
on the source content:

normalize=blackpt=black:whitept=white:smoothing=0

As above, but with 50 frames of temporal smoothing; flicker should be reduced, depending on the source
content:

normalize=blackpt=black:whitept=white:smoothing=50

As above, but with hue-preserving linked channel normalization:

normalize=blackpt=black:whitept=white:smoothing=50:independence=0

As above, but with half strength:

normalize=blackpt=black:whitept=white:smoothing=50:independence=0:strength=0.5

Map the darkest input color to red, the brightest input color to cyan:

normalize=blackpt=red:whitept=cyan

38.112 null# TOC

Pass the video source unchanged to the output.

38.113 ocr# TOC

Optical Character Recognition

This filter uses Tesseract for optical character recognition.

It accepts the following options:

datapath

Set datapath to tesseract data. Default is to use whatever was set at installation.

language

Set language, default is "eng".

whitelist

Set character whitelist.

blacklist

Set character blacklist.

The filter exports recognized text as the frame metadata lavfi.ocr.text.

38.114 ocv# TOC

Apply a video transform using libopencv.

To enable this filter, install the libopencv library and headers and configure FFmpeg with
--enable-libopencv.

It accepts the following parameters:

filter_name

The name of the libopencv filter to apply.

filter_params

The parameters to pass to the libopencv filter. If not specified, the default values are assumed.

Refer to the official libopencv documentation for more precise information:
http://docs.opencv.org/master/modules/imgproc/doc/filtering.html

Several libopencv filters are supported; see the following subsections.

http://docs.opencv.org/master/modules/imgproc/doc/filtering.html

38.114.1 dilate# TOC

Dilate an image by using a specific structuring element. It corresponds to the libopencv function
cvDilate.

It accepts the parameters: struct_el|nb_iterations.

struct_el represents a structuring element, and has the syntax: colsxrows+anchor_xxanchor_y/shape

cols and rows represent the number of columns and rows of the structuring element, anchor_x and
anchor_y the anchor point, and shape the shape for the structuring element. shape must be "rect", "cross",
"ellipse", or "custom".

If the value for shape is "custom", it must be followed by a string of the form "=filename". The file with
name filename is assumed to represent a binary image, with each printable character corresponding to a
bright pixel. When a custom shape is used, cols and rows are ignored, the number or columns and rows of
the read file are assumed instead.

The default value for struct_el is "3x3+0x0/rect".

nb_iterations specifies the number of times the transform is applied to the image, and defaults to 1.

Some examples:

Use the default values
ocv=dilate

Dilate using a structuring element with a 5x5 cross, iterating two times
ocv=filter_name=dilate:filter_params=5x5+2x2/cross|2

Read the shape from the file diamond.shape, iterating two times.
The file diamond.shape may contain a pattern of characters like this
*

*
The specified columns and rows are ignored
but the anchor point coordinates are not
ocv=dilate:0x0+2x2/custom=diamond.shape|2

38.114.2 erode# TOC

Erode an image by using a specific structuring element. It corresponds to the libopencv function
cvErode.

It accepts the parameters: struct_el:nb_iterations, with the same syntax and semantics as the dilate filter.

38.114.3 smooth# TOC

Smooth the input video.

The filter takes the following parameters: type|param1|param2|param3|param4.

type is the type of smooth filter to apply, and must be one of the following values: "blur", "blur_no_scale",
"median", "gaussian", or "bilateral". The default value is "gaussian".

The meaning of param1, param2, param3, and param4 depend on the smooth type. param1 and param2

accept integer positive values or 0. param3 and param4 accept floating point values.

The default value for param1 is 3. The default value for the other parameters is 0.

These parameters correspond to the parameters assigned to the libopencv function cvSmooth.

38.115 oscilloscope# TOC

2D Video Oscilloscope.

Useful to measure spatial impulse, step responses, chroma delays, etc.

It accepts the following parameters:

x

Set scope center x position.

y

Set scope center y position.

s

Set scope size, relative to frame diagonal.

t

Set scope tilt/rotation.

o

Set trace opacity.

tx

Set trace center x position.

ty

Set trace center y position.

tw

Set trace width, relative to width of frame.

th

Set trace height, relative to height of frame.

c

Set which components to trace. By default it traces first three components.

g

Draw trace grid. By default is enabled.

st

Draw some statistics. By default is enabled.

sc

Draw scope. By default is enabled.

38.115.1 Examples# TOC

Inspect full first row of video frame.

oscilloscope=x=0.5:y=0:s=1

Inspect full last row of video frame.

oscilloscope=x=0.5:y=1:s=1

Inspect full 5th line of video frame of height 1080.

oscilloscope=x=0.5:y=5/1080:s=1

Inspect full last column of video frame.

oscilloscope=x=1:y=0.5:s=1:t=1

38.116 overlay# TOC

Overlay one video on top of another.

It takes two inputs and has one output. The first input is the "main" video on which the second input is
overlaid.

It accepts the following parameters:

A description of the accepted options follows.

x
y

Set the expression for the x and y coordinates of the overlaid video on the main video. Default value
is "0" for both expressions. In case the expression is invalid, it is set to a huge value (meaning that the
overlay will not be displayed within the output visible area).

eof_action

See framesync.

eval

Set when the expressions for x, and y are evaluated.

It accepts the following values:

‘init’

only evaluate expressions once during the filter initialization or when a command is processed

‘frame’

evaluate expressions for each incoming frame

Default value is ‘frame’.

shortest

See framesync.

format

Set the format for the output video.

It accepts the following values:

‘yuv420’

force YUV420 output

‘yuv422’

force YUV422 output

‘yuv444’

force YUV444 output

‘rgb’

force packed RGB output

‘gbrp’

force planar RGB output

‘auto’

automatically pick format

Default value is ‘yuv420’.

repeatlast

See framesync.

alpha

Set format of alpha of the overlaid video, it can be straight or premultiplied. Default is straight.

The x, and y expressions can contain the following parameters.

main_w, W
main_h, H

The main input width and height.

overlay_w, w
overlay_h, h

The overlay input width and height.

x
y

The computed values for x and y. They are evaluated for each new frame.

hsub
vsub

horizontal and vertical chroma subsample values of the output format. For example for the pixel
format "yuv422p" hsub is 2 and vsub is 1.

n

the number of input frame, starting from 0

pos

the position in the file of the input frame, NAN if unknown

t

The timestamp, expressed in seconds. It’s NAN if the input timestamp is unknown.

This filter also supports the framesync options.

Note that the n, pos, t variables are available only when evaluation is done per frame, and will evaluate to
NAN when eval is set to ‘init’.

Be aware that frames are taken from each input video in timestamp order, hence, if their initial timestamps
differ, it is a good idea to pass the two inputs through a setpts=PTS-STARTPTS filter to have them begin
in the same zero timestamp, as the example for the movie filter does.

You can chain together more overlays but you should test the efficiency of such approach.

38.116.1 Commands# TOC

This filter supports the following commands:

x
y

Modify the x and y of the overlay input. The command accepts the same syntax of the corresponding
option.

If the specified expression is not valid, it is kept at its current value.

38.116.2 Examples# TOC

Draw the overlay at 10 pixels from the bottom right corner of the main video:

overlay=main_w-overlay_w-10:main_h-overlay_h-10

Using named options the example above becomes:

overlay=x=main_w-overlay_w-10:y=main_h-overlay_h-10

Insert a transparent PNG logo in the bottom left corner of the input, using the ffmpeg tool with the
-filter_complex option:

ffmpeg -i input -i logo -filter_complex ’overlay=10:main_h-overlay_h-10’ output

Insert 2 different transparent PNG logos (second logo on bottom right corner) using the ffmpeg
tool:

ffmpeg -i input -i logo1 -i logo2 -filter_complex ’overlay=x=10:y=H-h-10,overlay=x=W-w-10:y=H-h-10’ output

Add a transparent color layer on top of the main video; WxH must specify the size of the main input to
the overlay filter:

color=color=red@.3:size=WxH [over]; [in][over] overlay [out]

Play an original video and a filtered version (here with the deshake filter) side by side using the
ffplay tool:

ffplay input.avi -vf ’split[a][b]; [a]pad=iw*2:ih[src]; [b]deshake[filt]; [src][filt]overlay=w’

The above command is the same as:

ffplay input.avi -vf ’split[b], pad=iw*2[src], [b]deshake, [src]overlay=w’

Make a sliding overlay appearing from the left to the right top part of the screen starting since time 2:

overlay=x=’if(gte(t,2), -w+(t-2)*20, NAN)’:y=0

Compose output by putting two input videos side to side:

ffmpeg -i left.avi -i right.avi -filter_complex "
nullsrc=size=200x100 [background];
[0:v] setpts=PTS-STARTPTS, scale=100x100 [left];
[1:v] setpts=PTS-STARTPTS, scale=100x100 [right];
[background][left] overlay=shortest=1 [background+left];
[background+left][right] overlay=shortest=1:x=100 [left+right]
"

Mask 10-20 seconds of a video by applying the delogo filter to a section

ffmpeg -i test.avi -codec:v:0 wmv2 -ar 11025 -b:v 9000k
-vf ’[in]split[split_main][split_delogo];[split_delogo]trim=start=360:end=371,delogo=0:0:640:480[delogoed];[split_main][delogoed]overlay=eof_action=pass[out]’
masked.avi

Chain several overlays in cascade:

nullsrc=s=200x200 [bg];
testsrc=s=100x100, split=4 [in0][in1][in2][in3];
[in0] lutrgb=r=0, [bg] overlay=0:0 [mid0];
[in1] lutrgb=g=0, [mid0] overlay=100:0 [mid1];
[in2] lutrgb=b=0, [mid1] overlay=0:100 [mid2];
[in3] null, [mid2] overlay=100:100 [out0]

38.117 owdenoise# TOC

Apply Overcomplete Wavelet denoiser.

The filter accepts the following options:

depth

Set depth.

Larger depth values will denoise lower frequency components more, but slow down filtering.

Must be an int in the range 8-16, default is 8.

luma_strength, ls

Set luma strength.

Must be a double value in the range 0-1000, default is 1.0.

chroma_strength, cs

Set chroma strength.

Must be a double value in the range 0-1000, default is 1.0.

38.118 pad# TOC

Add paddings to the input image, and place the original input at the provided x, y coordinates.

It accepts the following parameters:

width, w
height, h

Specify an expression for the size of the output image with the paddings added. If the value for width

or height is 0, the corresponding input size is used for the output.

The width expression can reference the value set by the height expression, and vice versa.

The default value of width and height is 0.

x
y

Specify the offsets to place the input image at within the padded area, with respect to the top/left
border of the output image.

The x expression can reference the value set by the y expression, and vice versa.

The default value of x and y is 0.

If x or y evaluate to a negative number, they’ll be changed so the input image is centered on the
padded area.

color

Specify the color of the padded area. For the syntax of this option, check the "Color" section in the
ffmpeg-utils manual.

The default value of color is "black".

eval

Specify when to evaluate width, height, x and y expression.

It accepts the following values:

‘init’

Only evaluate expressions once during the filter initialization or when a command is processed.

‘frame’

Evaluate expressions for each incoming frame.

Default value is ‘init’.

aspect

Pad to aspect instead to a resolution.

The value for the width, height, x, and y options are expressions containing the following constants:

in_w
in_h

The input video width and height.

iw

ih

These are the same as in_w and in_h.

out_w
out_h

The output width and height (the size of the padded area), as specified by the width and height
expressions.

ow
oh

These are the same as out_w and out_h.

x
y

The x and y offsets as specified by the x and y expressions, or NAN if not yet specified.

a

same as iw / ih

sar

input sample aspect ratio

dar

input display aspect ratio, it is the same as (iw / ih) * sar

hsub
vsub

The horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p"
hsub is 2 and vsub is 1.

38.118.1 Examples# TOC

Add paddings with the color "violet" to the input video. The output video size is 640x480, and the
top-left corner of the input video is placed at column 0, row 40

pad=640:480:0:40:violet

The example above is equivalent to the following command:

pad=width=640:height=480:x=0:y=40:color=violet

Pad the input to get an output with dimensions increased by 3/2, and put the input video at the center

of the padded area:

pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"

Pad the input to get a squared output with size equal to the maximum value between the input width
and height, and put the input video at the center of the padded area:

pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"

Pad the input to get a final w/h ratio of 16:9:

pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"

In case of anamorphic video, in order to set the output display aspect correctly, it is necessary to use
sar in the expression, according to the relation:

(ih * X / ih) * sar = output_dar
X = output_dar / sar

Thus the previous example needs to be modified to:

pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"

Double the output size and put the input video in the bottom-right corner of the output padded area:

pad="2*iw:2*ih:ow-iw:oh-ih"

38.119 palettegen# TOC

Generate one palette for a whole video stream.

It accepts the following options:

max_colors

Set the maximum number of colors to quantize in the palette. Note: the palette will still contain 256
colors; the unused palette entries will be black.

reserve_transparent

Create a palette of 255 colors maximum and reserve the last one for transparency. Reserving the
transparency color is useful for GIF optimization. If not set, the maximum of colors in the palette will
be 256. You probably want to disable this option for a standalone image. Set by default.

transparency_color

Set the color that will be used as background for transparency.

stats_mode

Set statistics mode.

It accepts the following values:

‘full’

Compute full frame histograms.

‘diff’

Compute histograms only for the part that differs from previous frame. This might be relevant to
give more importance to the moving part of your input if the background is static.

‘single’

Compute new histogram for each frame.

Default value is full.

The filter also exports the frame metadata lavfi.color_quant_ratio (nb_color_in /
nb_color_out) which you can use to evaluate the degree of color quantization of the palette. This
information is also visible at info logging level.

38.119.1 Examples# TOC

Generate a representative palette of a given video using ffmpeg:

ffmpeg -i input.mkv -vf palettegen palette.png

38.120 paletteuse# TOC

Use a palette to downsample an input video stream.

The filter takes two inputs: one video stream and a palette. The palette must be a 256 pixels image.

It accepts the following options:

dither

Select dithering mode. Available algorithms are:

‘bayer’

Ordered 8x8 bayer dithering (deterministic)

‘heckbert’

Dithering as defined by Paul Heckbert in 1982 (simple error diffusion). Note: this dithering is
sometimes considered "wrong" and is included as a reference.

‘floyd_steinberg’

Floyd and Steingberg dithering (error diffusion)

‘sierra2’

Frankie Sierra dithering v2 (error diffusion)

‘sierra2_4a’

Frankie Sierra dithering v2 "Lite" (error diffusion)

Default is sierra2_4a.

bayer_scale

When bayer dithering is selected, this option defines the scale of the pattern (how much the
crosshatch pattern is visible). A low value means more visible pattern for less banding, and higher
value means less visible pattern at the cost of more banding.

The option must be an integer value in the range [0,5]. Default is 2.

diff_mode

If set, define the zone to process

‘rectangle’

Only the changing rectangle will be reprocessed. This is similar to GIF cropping/offsetting
compression mechanism. This option can be useful for speed if only a part of the image is
changing, and has use cases such as limiting the scope of the error diffusal dither to the
rectangle that bounds the moving scene (it leads to more deterministic output if the scene
doesn’t change much, and as a result less moving noise and better GIF compression).

Default is none.

new

Take new palette for each output frame.

alpha_threshold

Sets the alpha threshold for transparency. Alpha values above this threshold will be treated as
completely opaque, and values below this threshold will be treated as completely transparent.

The option must be an integer value in the range [0,255]. Default is 128.

38.120.1 Examples# TOC

Use a palette (generated for example with palettegen) to encode a GIF using ffmpeg:

ffmpeg -i input.mkv -i palette.png -lavfi paletteuse output.gif

38.121 perspective# TOC

Correct perspective of video not recorded perpendicular to the screen.

A description of the accepted parameters follows.

x0
y0
x1
y1
x2
y2
x3
y3

Set coordinates expression for top left, top right, bottom left and bottom right corners. Default values
are 0:0:W:0:0:H:W:H with which perspective will remain unchanged. If the sense option is set
to source, then the specified points will be sent to the corners of the destination. If the sense
option is set to destination, then the corners of the source will be sent to the specified
coordinates.

The expressions can use the following variables:

W
H

the width and height of video frame.

in

Input frame count.

on

Output frame count.

interpolation

Set interpolation for perspective correction.

It accepts the following values:

‘linear’
‘cubic’

Default value is ‘linear’.

sense

Set interpretation of coordinate options.

It accepts the following values:

‘0, source’

Send point in the source specified by the given coordinates to the corners of the destination.

‘1, destination’

Send the corners of the source to the point in the destination specified by the given coordinates.

Default value is ‘source’.

eval

Set when the expressions for coordinates x0,y0,...x3,y3 are evaluated.

It accepts the following values:

‘init’

only evaluate expressions once during the filter initialization or when a command is processed

‘frame’

evaluate expressions for each incoming frame

Default value is ‘init’.

38.122 phase# TOC

Delay interlaced video by one field time so that the field order changes.

The intended use is to fix PAL movies that have been captured with the opposite field order to the
film-to-video transfer.

A description of the accepted parameters follows.

mode

Set phase mode.

It accepts the following values:

‘t’

Capture field order top-first, transfer bottom-first. Filter will delay the bottom field.

‘b’

Capture field order bottom-first, transfer top-first. Filter will delay the top field.

‘p’

Capture and transfer with the same field order. This mode only exists for the documentation of
the other options to refer to, but if you actually select it, the filter will faithfully do nothing.

‘a’

Capture field order determined automatically by field flags, transfer opposite. Filter selects
among ‘t’ and ‘b’ modes on a frame by frame basis using field flags. If no field information is
available, then this works just like ‘u’.

‘u’

Capture unknown or varying, transfer opposite. Filter selects among ‘t’ and ‘b’ on a frame by
frame basis by analyzing the images and selecting the alternative that produces best match
between the fields.

‘T’

Capture top-first, transfer unknown or varying. Filter selects among ‘t’ and ‘p’ using image
analysis.

‘B’

Capture bottom-first, transfer unknown or varying. Filter selects among ‘b’ and ‘p’ using image
analysis.

‘A’

Capture determined by field flags, transfer unknown or varying. Filter selects among ‘t’, ‘b’
and ‘p’ using field flags and image analysis. If no field information is available, then this works
just like ‘U’. This is the default mode.

‘U’

Both capture and transfer unknown or varying. Filter selects among ‘t’, ‘b’ and ‘p’ using image
analysis only.

38.123 pixdesctest# TOC

Pixel format descriptor test filter, mainly useful for internal testing. The output video should be equal to
the input video.

For example:

format=monow, pixdesctest

can be used to test the monowhite pixel format descriptor definition.

38.124 pixscope# TOC

Display sample values of color channels. Mainly useful for checking color and levels. Minimum supported
resolution is 640x480.

The filters accept the following options:

x

Set scope X position, relative offset on X axis.

y

Set scope Y position, relative offset on Y axis.

w

Set scope width.

h

Set scope height.

o

Set window opacity. This window also holds statistics about pixel area.

wx

Set window X position, relative offset on X axis.

wy

Set window Y position, relative offset on Y axis.

38.125 pp# TOC

Enable the specified chain of postprocessing subfilters using libpostproc. This library should be
automatically selected with a GPL build (--enable-gpl). Subfilters must be separated by ’/’ and can
be disabled by prepending a ’-’. Each subfilter and some options have a short and a long name that can be
used interchangeably, i.e. dr/dering are the same.

The filters accept the following options:

subfilters

Set postprocessing subfilters string.

All subfilters share common options to determine their scope:

a/autoq

Honor the quality commands for this subfilter.

c/chrom

Do chrominance filtering, too (default).

y/nochrom

Do luminance filtering only (no chrominance).

n/noluma

Do chrominance filtering only (no luminance).

These options can be appended after the subfilter name, separated by a ’|’.

Available subfilters are:

hb/hdeblock[|difference[|flatness]]

Horizontal deblocking filter

difference

Difference factor where higher values mean more deblocking (default: 32).

flatness

Flatness threshold where lower values mean more deblocking (default: 39).

vb/vdeblock[|difference[|flatness]]

Vertical deblocking filter

difference

Difference factor where higher values mean more deblocking (default: 32).

flatness

Flatness threshold where lower values mean more deblocking (default: 39).

ha/hadeblock[|difference[|flatness]]

Accurate horizontal deblocking filter

difference

Difference factor where higher values mean more deblocking (default: 32).

flatness

Flatness threshold where lower values mean more deblocking (default: 39).

va/vadeblock[|difference[|flatness]]

Accurate vertical deblocking filter

difference

Difference factor where higher values mean more deblocking (default: 32).

flatness

Flatness threshold where lower values mean more deblocking (default: 39).

The horizontal and vertical deblocking filters share the difference and flatness values so you cannot set
different horizontal and vertical thresholds.

h1/x1hdeblock

Experimental horizontal deblocking filter

v1/x1vdeblock

Experimental vertical deblocking filter

dr/dering

Deringing filter

tn/tmpnoise[|threshold1[|threshold2[|threshold3]]], temporal noise
reducer

threshold1

larger -> stronger filtering

threshold2

larger -> stronger filtering

threshold3

larger -> stronger filtering

al/autolevels[:f/fullyrange], automatic brightness / contrast
correction

f/fullyrange

Stretch luminance to 0-255.

lb/linblenddeint

Linear blend deinterlacing filter that deinterlaces the given block by filtering all lines with a (1 2
1) filter.

li/linipoldeint

Linear interpolating deinterlacing filter that deinterlaces the given block by linearly interpolating
every second line.

ci/cubicipoldeint

Cubic interpolating deinterlacing filter deinterlaces the given block by cubically interpolating every
second line.

md/mediandeint

Median deinterlacing filter that deinterlaces the given block by applying a median filter to every
second line.

fd/ffmpegdeint

FFmpeg deinterlacing filter that deinterlaces the given block by filtering every second line with a
(-1 4 2 4 -1) filter.

l5/lowpass5

Vertically applied FIR lowpass deinterlacing filter that deinterlaces the given block by filtering all
lines with a (-1 2 6 2 -1) filter.

fq/forceQuant[|quantizer]

Overrides the quantizer table from the input with the constant quantizer you specify.

quantizer

Quantizer to use

de/default

Default pp filter combination (hb|a,vb|a,dr|a)

fa/fast

Fast pp filter combination (h1|a,v1|a,dr|a)

ac

High quality pp filter combination (ha|a|128|7,va|a,dr|a)

38.125.1 Examples# TOC

Apply horizontal and vertical deblocking, deringing and automatic brightness/contrast:

pp=hb/vb/dr/al

Apply default filters without brightness/contrast correction:

pp=de/-al

Apply default filters and temporal denoiser:

pp=default/tmpnoise|1|2|3

Apply deblocking on luminance only, and switch vertical deblocking on or off automatically
depending on available CPU time:

pp=hb|y/vb|a

38.126 pp7# TOC

Apply Postprocessing filter 7. It is variant of the spp filter, similar to spp = 6 with 7 point DCT, where
only the center sample is used after IDCT.

The filter accepts the following options:

qp

Force a constant quantization parameter. It accepts an integer in range 0 to 63. If not set, the filter
will use the QP from the video stream (if available).

mode

Set thresholding mode. Available modes are:

‘hard’

Set hard thresholding.

‘soft’

Set soft thresholding (better de-ringing effect, but likely blurrier).

‘medium’

Set medium thresholding (good results, default).

38.127 premultiply# TOC

Apply alpha premultiply effect to input video stream using first plane of second stream as alpha.

Both streams must have same dimensions and same pixel format.

The filter accepts the following option:

planes

Set which planes will be processed, unprocessed planes will be copied. By default value 0xf, all
planes will be processed.

inplace

Do not require 2nd input for processing, instead use alpha plane from input stream.

38.128 prewitt# TOC

Apply prewitt operator to input video stream.

The filter accepts the following option:

planes

Set which planes will be processed, unprocessed planes will be copied. By default value 0xf, all
planes will be processed.

scale

Set value which will be multiplied with filtered result.

delta

Set value which will be added to filtered result.

38.129 pseudocolor# TOC

Alter frame colors in video with pseudocolors.

This filter accept the following options:

c0

set pixel first component expression

c1

set pixel second component expression

c2

set pixel third component expression

c3

set pixel fourth component expression, corresponds to the alpha component

i

set component to use as base for altering colors

Each of them specifies the expression to use for computing the lookup table for the corresponding pixel
component values.

The expressions can contain the following constants and functions:

w
h

The input width and height.

val

The input value for the pixel component.

ymin, umin, vmin, amin

The minimum allowed component value.

ymax, umax, vmax, amax

The maximum allowed component value.

All expressions default to "val".

38.129.1 Examples# TOC

Change too high luma values to gradient:
pseudocolor="’if(between(val,ymax,amax),lerp(ymin,ymax,(val-ymax)/(amax-ymax)),-1):if(between(val,ymax,amax),lerp(umax,umin,(val-ymax)/(amax-ymax)),-1):if(between(val,ymax,amax),lerp(vmin,vmax,(val-ymax)/(amax-ymax)),-1):-1’"

38.130 psnr# TOC

Obtain the average, maximum and minimum PSNR (Peak Signal to Noise Ratio) between two input
videos.

This filter takes in input two input videos, the first input is considered the "main" source and is passed
unchanged to the output. The second input is used as a "reference" video for computing the PSNR.

Both video inputs must have the same resolution and pixel format for this filter to work correctly. Also it
assumes that both inputs have the same number of frames, which are compared one by one.

The obtained average PSNR is printed through the logging system.

The filter stores the accumulated MSE (mean squared error) of each frame, and at the end of the
processing it is averaged across all frames equally, and the following formula is applied to obtain the
PSNR:

PSNR = 10*log10(MAX^2/MSE)

Where MAX is the average of the maximum values of each component of the image.

The description of the accepted parameters follows.

stats_file, f

If specified the filter will use the named file to save the PSNR of each individual frame. When
filename equals "-" the data is sent to standard output.

stats_version

Specifies which version of the stats file format to use. Details of each format are written below.
Default value is 1.

stats_add_max

Determines whether the max value is output to the stats log. Default value is 0. Requires
stats_version >= 2. If this is set and stats_version < 2, the filter will return an error.

This filter also supports the framesync options.

The file printed if stats_file is selected, contains a sequence of key/value pairs of the form key:value for
each compared couple of frames.

If a stats_version greater than 1 is specified, a header line precedes the list of per-frame-pair stats, with
key value pairs following the frame format with the following parameters:

psnr_log_version

The version of the log file format. Will match stats_version.

fields

A comma separated list of the per-frame-pair parameters included in the log.

A description of each shown per-frame-pair parameter follows:

n

sequential number of the input frame, starting from 1

mse_avg

Mean Square Error pixel-by-pixel average difference of the compared frames, averaged over all the
image components.

mse_y, mse_u, mse_v, mse_r, mse_g, mse_g, mse_a

Mean Square Error pixel-by-pixel average difference of the compared frames for the component
specified by the suffix.

psnr_y, psnr_u, psnr_v, psnr_r, psnr_g, psnr_b, psnr_a

Peak Signal to Noise ratio of the compared frames for the component specified by the suffix.

max_avg, max_y, max_u, max_v

Maximum allowed value for each channel, and average over all channels.

For example:

movie=ref_movie.mpg, setpts=PTS-STARTPTS [main];
[main][ref] psnr="stats_file=stats.log" [out]

On this example the input file being processed is compared with the reference file ref_movie.mpg.
The PSNR of each individual frame is stored in stats.log.

38.131 pullup# TOC

Pulldown reversal (inverse telecine) filter, capable of handling mixed hard-telecine, 24000/1001 fps
progressive, and 30000/1001 fps progressive content.

The pullup filter is designed to take advantage of future context in making its decisions. This filter is
stateless in the sense that it does not lock onto a pattern to follow, but it instead looks forward to the
following fields in order to identify matches and rebuild progressive frames.

To produce content with an even framerate, insert the fps filter after pullup, use fps=24000/1001 if the
input frame rate is 29.97fps, fps=24 for 30fps and the (rare) telecined 25fps input.

The filter accepts the following options:

jl
jr
jt
jb

These options set the amount of "junk" to ignore at the left, right, top, and bottom of the image,
respectively. Left and right are in units of 8 pixels, while top and bottom are in units of 2 lines. The
default is 8 pixels on each side.

sb

Set the strict breaks. Setting this option to 1 will reduce the chances of filter generating an occasional
mismatched frame, but it may also cause an excessive number of frames to be dropped during high
motion sequences. Conversely, setting it to -1 will make filter match fields more easily. This may
help processing of video where there is slight blurring between the fields, but may also cause there to
be interlaced frames in the output. Default value is 0.

mp

Set the metric plane to use. It accepts the following values:

‘l’

Use luma plane.

‘u’

Use chroma blue plane.

‘v’

Use chroma red plane.

This option may be set to use chroma plane instead of the default luma plane for doing filter’s
computations. This may improve accuracy on very clean source material, but more likely will
decrease accuracy, especially if there is chroma noise (rainbow effect) or any grayscale video. The
main purpose of setting mp to a chroma plane is to reduce CPU load and make pullup usable in
realtime on slow machines.

For best results (without duplicated frames in the output file) it is necessary to change the output frame
rate. For example, to inverse telecine NTSC input:

ffmpeg -i input -vf pullup -r 24000/1001 ...

38.132 qp# TOC

Change video quantization parameters (QP).

The filter accepts the following option:

qp

Set expression for quantization parameter.

The expression is evaluated through the eval API and can contain, among others, the following constants:

known

1 if index is not 129, 0 otherwise.

qp

Sequential index starting from -129 to 128.

38.132.1 Examples# TOC

Some equation like:

qp=2+2*sin(PI*qp)

38.133 random# TOC

Flush video frames from internal cache of frames into a random order. No frame is discarded. Inspired by
frei0r nervous filter.

frames

Set size in number of frames of internal cache, in range from 2 to 512. Default is 30.

seed

Set seed for random number generator, must be an integer included between 0 and UINT32_MAX. If
not specified, or if explicitly set to less than 0, the filter will try to use a good random seed on a best
effort basis.

38.134 readeia608# TOC

Read closed captioning (EIA-608) information from the top lines of a video frame.

This filter adds frame metadata for lavfi.readeia608.X.cc and lavfi.readeia608.X.line,
where X is the number of the identified line with EIA-608 data (starting from 0). A description of each
metadata value follows:

lavfi.readeia608.X.cc

The two bytes stored as EIA-608 data (printed in hexadecimal).

lavfi.readeia608.X.line

The number of the line on which the EIA-608 data was identified and read.

This filter accepts the following options:

scan_min

Set the line to start scanning for EIA-608 data. Default is 0.

scan_max

Set the line to end scanning for EIA-608 data. Default is 29.

mac

Set minimal acceptable amplitude change for sync codes detection. Default is 0.2. Allowed range is
[0.001 - 1].

spw

Set the ratio of width reserved for sync code detection. Default is 0.27. Allowed range is [0.01 -
0.7].

mhd

Set the max peaks height difference for sync code detection. Default is 0.1. Allowed range is [0.0
- 0.5].

mpd

Set max peaks period difference for sync code detection. Default is 0.1. Allowed range is [0.0 -
0.5].

msd

Set the first two max start code bits differences. Default is 0.02. Allowed range is [0.0 - 0.5].

bhd

Set the minimum ratio of bits height compared to 3rd start code bit. Default is 0.75. Allowed range
is [0.01 - 1].

th_w

Set the white color threshold. Default is 0.35. Allowed range is [0.1 - 1].

th_b

Set the black color threshold. Default is 0.15. Allowed range is [0.0 - 0.5].

chp

Enable checking the parity bit. In the event of a parity error, the filter will output 0x00 for that
character. Default is false.

38.134.1 Examples# TOC

Output a csv with presentation time and the first two lines of identified EIA-608 captioning data.

ffprobe -f lavfi -i movie=captioned_video.mov,readeia608 -show_entries frame=pkt_pts_time:frame_tags=lavfi.readeia608.0.cc,lavfi.readeia608.1.cc -of csv

38.135 readvitc# TOC

Read vertical interval timecode (VITC) information from the top lines of a video frame.

The filter adds frame metadata key lavfi.readvitc.tc_str with the timecode value, if a valid
timecode has been detected. Further metadata key lavfi.readvitc.found is set to 0/1 depending on
whether timecode data has been found or not.

This filter accepts the following options:

scan_max

Set the maximum number of lines to scan for VITC data. If the value is set to -1 the full video frame
is scanned. Default is 45.

thr_b

Set the luma threshold for black. Accepts float numbers in the range [0.0,1.0], default value is 0.2.
The value must be equal or less than thr_w.

thr_w

Set the luma threshold for white. Accepts float numbers in the range [0.0,1.0], default value is 0.6.
The value must be equal or greater than thr_b.

38.135.1 Examples# TOC

Detect and draw VITC data onto the video frame; if no valid VITC is detected, draw --:--:--:--
as a placeholder:

ffmpeg -i input.avi -filter:v ’readvitc,drawtext=fontfile=FreeMono.ttf:text=%{metadata\\:lavfi.readvitc.tc_str\\:--\\\\\\:--\\\\\\:--\\\\\\:--}:x=(w-tw)/2:y=400-ascent’

38.136 remap# TOC

Remap pixels using 2nd: Xmap and 3rd: Ymap input video stream.

Destination pixel at position (X, Y) will be picked from source (x, y) position where x = Xmap(X, Y) and
y = Ymap(X, Y). If mapping values are out of range, zero value for pixel will be used for destination
pixel.

Xmap and Ymap input video streams must be of same dimensions. Output video stream will have
Xmap/Ymap video stream dimensions. Xmap and Ymap input video streams are 16bit depth, single
channel.

38.137 removegrain# TOC

The removegrain filter is a spatial denoiser for progressive video.

m0

Set mode for the first plane.

m1

Set mode for the second plane.

m2

Set mode for the third plane.

m3

Set mode for the fourth plane.

Range of mode is from 0 to 24. Description of each mode follows:

0

Leave input plane unchanged. Default.

1

Clips the pixel with the minimum and maximum of the 8 neighbour pixels.

2

Clips the pixel with the second minimum and maximum of the 8 neighbour pixels.

3

Clips the pixel with the third minimum and maximum of the 8 neighbour pixels.

4

Clips the pixel with the fourth minimum and maximum of the 8 neighbour pixels. This is equivalent
to a median filter.

5

Line-sensitive clipping giving the minimal change.

6

Line-sensitive clipping, intermediate.

7

Line-sensitive clipping, intermediate.

8

Line-sensitive clipping, intermediate.

9

Line-sensitive clipping on a line where the neighbours pixels are the closest.

10

Replaces the target pixel with the closest neighbour.

11

[1 2 1] horizontal and vertical kernel blur.

12

Same as mode 11.

13

Bob mode, interpolates top field from the line where the neighbours pixels are the closest.

14

Bob mode, interpolates bottom field from the line where the neighbours pixels are the closest.

15

Bob mode, interpolates top field. Same as 13 but with a more complicated interpolation formula.

16

Bob mode, interpolates bottom field. Same as 14 but with a more complicated interpolation formula.

17

Clips the pixel with the minimum and maximum of respectively the maximum and minimum of each
pair of opposite neighbour pixels.

18

Line-sensitive clipping using opposite neighbours whose greatest distance from the current pixel is
minimal.

19

Replaces the pixel with the average of its 8 neighbours.

20

Averages the 9 pixels ([1 1 1] horizontal and vertical blur).

21

Clips pixels using the averages of opposite neighbour.

22

Same as mode 21 but simpler and faster.

23

Small edge and halo removal, but reputed useless.

24

Similar as 23.

38.138 removelogo# TOC

Suppress a TV station logo, using an image file to determine which pixels comprise the logo. It works by
filling in the pixels that comprise the logo with neighboring pixels.

The filter accepts the following options:

filename, f

Set the filter bitmap file, which can be any image format supported by libavformat. The width and
height of the image file must match those of the video stream being processed.

Pixels in the provided bitmap image with a value of zero are not considered part of the logo, non-zero
pixels are considered part of the logo. If you use white (255) for the logo and black (0) for the rest, you
will be safe. For making the filter bitmap, it is recommended to take a screen capture of a black frame with
the logo visible, and then using a threshold filter followed by the erode filter once or twice.

If needed, little splotches can be fixed manually. Remember that if logo pixels are not covered, the filter
quality will be much reduced. Marking too many pixels as part of the logo does not hurt as much, but it
will increase the amount of blurring needed to cover over the image and will destroy more information
than necessary, and extra pixels will slow things down on a large logo.

38.139 repeatfields# TOC

This filter uses the repeat_field flag from the Video ES headers and hard repeats fields based on its value.

38.140 reverse# TOC

Reverse a video clip.

Warning: This filter requires memory to buffer the entire clip, so trimming is suggested.

38.140.1 Examples# TOC

Take the first 5 seconds of a clip, and reverse it.

trim=end=5,reverse

38.141 roberts# TOC

Apply roberts cross operator to input video stream.

The filter accepts the following option:

planes

Set which planes will be processed, unprocessed planes will be copied. By default value 0xf, all
planes will be processed.

scale

Set value which will be multiplied with filtered result.

delta

Set value which will be added to filtered result.

38.142 rotate# TOC

Rotate video by an arbitrary angle expressed in radians.

The filter accepts the following options:

A description of the optional parameters follows.

angle, a

Set an expression for the angle by which to rotate the input video clockwise, expressed as a number
of radians. A negative value will result in a counter-clockwise rotation. By default it is set to "0".

This expression is evaluated for each frame.

out_w, ow

Set the output width expression, default value is "iw". This expression is evaluated just once during
configuration.

out_h, oh

Set the output height expression, default value is "ih". This expression is evaluated just once during
configuration.

bilinear

Enable bilinear interpolation if set to 1, a value of 0 disables it. Default value is 1.

fillcolor, c

Set the color used to fill the output area not covered by the rotated image. For the general syntax of
this option, check the "Color" section in the ffmpeg-utils manual. If the special value "none" is
selected then no background is printed (useful for example if the background is never shown).

Default value is "black".

The expressions for the angle and the output size can contain the following constants and functions:

n

sequential number of the input frame, starting from 0. It is always NAN before the first frame is
filtered.

t

time in seconds of the input frame, it is set to 0 when the filter is configured. It is always NAN before
the first frame is filtered.

hsub
vsub

horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is
2 and vsub is 1.

in_w, iw
in_h, ih

the input video width and height

out_w, ow
out_h, oh

the output width and height, that is the size of the padded area as specified by the width and height
expressions

rotw(a)
roth(a)

the minimal width/height required for completely containing the input video rotated by a radians.

These are only available when computing the out_w and out_h expressions.

38.142.1 Examples# TOC

Rotate the input by PI/6 radians clockwise:

rotate=PI/6

Rotate the input by PI/6 radians counter-clockwise:

rotate=-PI/6

Rotate the input by 45 degrees clockwise:

rotate=45*PI/180

Apply a constant rotation with period T, starting from an angle of PI/3:

rotate=PI/3+2*PI*t/T

Make the input video rotation oscillating with a period of T seconds and an amplitude of A radians:

rotate=A*sin(2*PI/T*t)

Rotate the video, output size is chosen so that the whole rotating input video is always completely
contained in the output:

rotate=’2*PI*t:ow=hypot(iw,ih):oh=ow’

Rotate the video, reduce the output size so that no background is ever shown:

rotate=2*PI*t:ow=’min(iw,ih)/sqrt(2)’:oh=ow:c=none

38.142.2 Commands# TOC

The filter supports the following commands:

a, angle

Set the angle expression. The command accepts the same syntax of the corresponding option.

If the specified expression is not valid, it is kept at its current value.

38.143 sab# TOC

Apply Shape Adaptive Blur.

The filter accepts the following options:

luma_radius, lr

Set luma blur filter strength, must be a value in range 0.1-4.0, default value is 1.0. A greater value
will result in a more blurred image, and in slower processing.

luma_pre_filter_radius, lpfr

Set luma pre-filter radius, must be a value in the 0.1-2.0 range, default value is 1.0.

luma_strength, ls

Set luma maximum difference between pixels to still be considered, must be a value in the 0.1-100.0
range, default value is 1.0.

chroma_radius, cr

Set chroma blur filter strength, must be a value in range -0.9-4.0. A greater value will result in a more
blurred image, and in slower processing.

chroma_pre_filter_radius, cpfr

Set chroma pre-filter radius, must be a value in the -0.9-2.0 range.

chroma_strength, cs

Set chroma maximum difference between pixels to still be considered, must be a value in the
-0.9-100.0 range.

Each chroma option value, if not explicitly specified, is set to the corresponding luma option value.

38.144 scale# TOC

Scale (resize) the input video, using the libswscale library.

The scale filter forces the output display aspect ratio to be the same of the input, by changing the output
sample aspect ratio.

If the input image format is different from the format requested by the next filter, the scale filter will
convert the input to the requested format.

38.144.1 Options# TOC

The filter accepts the following options, or any of the options supported by the libswscale scaler.

See (ffmpeg-scaler)the ffmpeg-scaler manual for the complete list of scaler options.

width, w

height, h

Set the output video dimension expression. Default value is the input dimension.

If the width or w value is 0, the input width is used for the output. If the height or h value is 0, the
input height is used for the output.

If one and only one of the values is -n with n >= 1, the scale filter will use a value that maintains the
aspect ratio of the input image, calculated from the other specified dimension. After that it will,
however, make sure that the calculated dimension is divisible by n and adjust the value if necessary.

If both values are -n with n >= 1, the behavior will be identical to both values being set to 0 as
previously detailed.

See below for the list of accepted constants for use in the dimension expression.

eval

Specify when to evaluate width and height expression. It accepts the following values:

‘init’

Only evaluate expressions once during the filter initialization or when a command is processed.

‘frame’

Evaluate expressions for each incoming frame.

Default value is ‘init’.

interl

Set the interlacing mode. It accepts the following values:

‘1’

Force interlaced aware scaling.

‘0’

Do not apply interlaced scaling.

‘-1’

Select interlaced aware scaling depending on whether the source frames are flagged as interlaced
or not.

Default value is ‘0’.

flags

Set libswscale scaling flags. See (ffmpeg-scaler)the ffmpeg-scaler manual for the complete list of
values. If not explicitly specified the filter applies the default flags.

param0, param1

Set libswscale input parameters for scaling algorithms that need them. See (ffmpeg-scaler)the
ffmpeg-scaler manual for the complete documentation. If not explicitly specified the filter applies
empty parameters.

size, s

Set the video size. For the syntax of this option, check the (ffmpeg-utils)"Video size" section in the
ffmpeg-utils manual.

in_color_matrix
out_color_matrix

Set in/output YCbCr color space type.

This allows the autodetected value to be overridden as well as allows forcing a specific value used for
the output and encoder.

If not specified, the color space type depends on the pixel format.

Possible values:

‘auto’

Choose automatically.

‘bt709’

Format conforming to International Telecommunication Union (ITU) Recommendation BT.709.

‘fcc’

Set color space conforming to the United States Federal Communications Commission (FCC)
Code of Federal Regulations (CFR) Title 47 (2003) 73.682 (a).

‘bt601’

Set color space conforming to:

ITU Radiocommunication Sector (ITU-R) Recommendation BT.601
ITU-R Rec. BT.470-6 (1998) Systems B, B1, and G
Society of Motion Picture and Television Engineers (SMPTE) ST 170:2004

‘smpte240m’

Set color space conforming to SMPTE ST 240:1999.

in_range
out_range

Set in/output YCbCr sample range.

This allows the autodetected value to be overridden as well as allows forcing a specific value used for
the output and encoder. If not specified, the range depends on the pixel format. Possible values:

‘auto/unknown’

Choose automatically.

‘jpeg/full/pc’

Set full range (0-255 in case of 8-bit luma).

‘mpeg/limited/tv’

Set "MPEG" range (16-235 in case of 8-bit luma).

force_original_aspect_ratio

Enable decreasing or increasing output video width or height if necessary to keep the original aspect
ratio. Possible values:

‘disable’

Scale the video as specified and disable this feature.

‘decrease’

The output video dimensions will automatically be decreased if needed.

‘increase’

The output video dimensions will automatically be increased if needed.

One useful instance of this option is that when you know a specific device’s maximum allowed
resolution, you can use this to limit the output video to that, while retaining the aspect ratio. For
example, device A allows 1280x720 playback, and your video is 1920x800. Using this option (set it
to decrease) and specifying 1280x720 to the command line makes the output 1280x533.

Please note that this is a different thing than specifying -1 for w or h, you still need to specify the
output resolution for this option to work.

The values of the w and h options are expressions containing the following constants:

in_w
in_h

The input width and height

iw
ih

These are the same as in_w and in_h.

out_w
out_h

The output (scaled) width and height

ow
oh

These are the same as out_w and out_h

a

The same as iw / ih

sar

input sample aspect ratio

dar

The input display aspect ratio. Calculated from (iw / ih) * sar.

hsub
vsub

horizontal and vertical input chroma subsample values. For example for the pixel format "yuv422p"
hsub is 2 and vsub is 1.

ohsub
ovsub

horizontal and vertical output chroma subsample values. For example for the pixel format "yuv422p"
hsub is 2 and vsub is 1.

38.144.2 Examples# TOC

Scale the input video to a size of 200x100

scale=w=200:h=100

This is equivalent to:

scale=200:100

or:

scale=200x100

Specify a size abbreviation for the output size:

scale=qcif

which can also be written as:

scale=size=qcif

Scale the input to 2x:

scale=w=2*iw:h=2*ih

The above is the same as:

scale=2*in_w:2*in_h

Scale the input to 2x with forced interlaced scaling:

scale=2*iw:2*ih:interl=1

Scale the input to half size:

scale=w=iw/2:h=ih/2

Increase the width, and set the height to the same size:

scale=3/2*iw:ow

Seek Greek harmony:

scale=iw:1/PHI*iw
scale=ih*PHI:ih

Increase the height, and set the width to 3/2 of the height:

scale=w=3/2*oh:h=3/5*ih

Increase the size, making the size a multiple of the chroma subsample values:

scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"

Increase the width to a maximum of 500 pixels, keeping the same aspect ratio as the input:

scale=w=’min(500\, iw*3/2):h=-1’

38.144.3 Commands# TOC

This filter supports the following commands:

width, w
height, h

Set the output video dimension expression. The command accepts the same syntax of the
corresponding option.

If the specified expression is not valid, it is kept at its current value.

38.145 scale_npp# TOC

Use the NVIDIA Performance Primitives (libnpp) to perform scaling and/or pixel format conversion on
CUDA video frames. Setting the output width and height works in the same way as for the scale filter.

The following additional options are accepted:

format

The pixel format of the output CUDA frames. If set to the string "same" (the default), the input
format will be kept. Note that automatic format negotiation and conversion is not yet supported for
hardware frames

interp_algo

The interpolation algorithm used for resizing. One of the following:

nn

Nearest neighbour.

linear
cubic
cubic2p_bspline

2-parameter cubic (B=1, C=0)

cubic2p_catmullrom

2-parameter cubic (B=0, C=1/2)

cubic2p_b05c03

2-parameter cubic (B=1/2, C=3/10)

super

Supersampling

lanczos

38.146 scale2ref# TOC

Scale (resize) the input video, based on a reference video.

See the scale filter for available options, scale2ref supports the same but uses the reference video instead
of the main input as basis. scale2ref also supports the following additional constants for the w and h
options:

main_w
main_h

The main input video’s width and height

main_a

The same as main_w / main_h

main_sar

The main input video’s sample aspect ratio

main_dar, mdar

The main input video’s display aspect ratio. Calculated from (main_w / main_h) *
main_sar.

main_hsub
main_vsub

The main input video’s horizontal and vertical chroma subsample values. For example for the pixel
format "yuv422p" hsub is 2 and vsub is 1.

38.146.1 Examples# TOC

Scale a subtitle stream (b) to match the main video (a) in size before overlaying

’scale2ref[b][a];[a][b]overlay’

38.147 selectivecolor# TOC

Adjust cyan, magenta, yellow and black (CMYK) to certain ranges of colors (such as "reds", "yellows",
"greens", "cyans", ...). The adjustment range is defined by the "purity" of the color (that is, how saturated
it already is).

This filter is similar to the Adobe Photoshop Selective Color tool.

The filter accepts the following options:

correction_method

Select color correction method.

Available values are:

‘absolute’

Specified adjustments are applied "as-is" (added/subtracted to original pixel component value).

‘relative’

Specified adjustments are relative to the original component value.

Default is absolute.

reds

Adjustments for red pixels (pixels where the red component is the maximum)

yellows

Adjustments for yellow pixels (pixels where the blue component is the minimum)

greens

Adjustments for green pixels (pixels where the green component is the maximum)

cyans

Adjustments for cyan pixels (pixels where the red component is the minimum)

blues

Adjustments for blue pixels (pixels where the blue component is the maximum)

magentas

Adjustments for magenta pixels (pixels where the green component is the minimum)

whites

Adjustments for white pixels (pixels where all components are greater than 128)

neutrals

Adjustments for all pixels except pure black and pure white

blacks

Adjustments for black pixels (pixels where all components are lesser than 128)

psfile

Specify a Photoshop selective color file (.asv) to import the settings from.

All the adjustment settings (reds, yellows, ...) accept up to 4 space separated floating point adjustment
values in the [-1,1] range, respectively to adjust the amount of cyan, magenta, yellow and black for the
pixels of its range.

38.147.1 Examples# TOC

Increase cyan by 50% and reduce yellow by 33% in every green areas, and increase magenta by 27%
in blue areas:

selectivecolor=greens=.5 0 -.33 0:blues=0 .27

Use a Photoshop selective color preset:

selectivecolor=psfile=MySelectiveColorPresets/Misty.asv

38.148 separatefields# TOC

The separatefields takes a frame-based video input and splits each frame into its components fields,
producing a new half height clip with twice the frame rate and twice the frame count.

This filter use field-dominance information in frame to decide which of each pair of fields to place first in
the output. If it gets it wrong use setfield filter before separatefields filter.

38.149 setdar, setsar# TOC

The setdar filter sets the Display Aspect Ratio for the filter output video.

This is done by changing the specified Sample (aka Pixel) Aspect Ratio, according to the following
equation:

DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR

Keep in mind that the setdar filter does not modify the pixel dimensions of the video frame. Also, the
display aspect ratio set by this filter may be changed by later filters in the filterchain, e.g. in case of scaling
or if another "setdar" or a "setsar" filter is applied.

The setsar filter sets the Sample (aka Pixel) Aspect Ratio for the filter output video.

Note that as a consequence of the application of this filter, the output display aspect ratio will change
according to the equation above.

Keep in mind that the sample aspect ratio set by the setsar filter may be changed by later filters in the
filterchain, e.g. if another "setsar" or a "setdar" filter is applied.

It accepts the following parameters:

r, ratio, dar (setdar only), sar (setsar only)

Set the aspect ratio used by the filter.

The parameter can be a floating point number string, an expression, or a string of the form num:den,
where num and den are the numerator and denominator of the aspect ratio. If the parameter is not
specified, it is assumed the value "0". In case the form "num:den" is used, the : character should be
escaped.

max

Set the maximum integer value to use for expressing numerator and denominator when reducing the
expressed aspect ratio to a rational. Default value is 100.

The parameter sar is an expression containing the following constants:

E, PI, PHI

These are approximated values for the mathematical constants e (Euler’s number), pi (Greek pi), and
phi (the golden ratio).

w, h

The input width and height.

a

These are the same as w / h.

sar

The input sample aspect ratio.

dar

The input display aspect ratio. It is the same as (w / h) * sar.

hsub, vsub

Horizontal and vertical chroma subsample values. For example, for the pixel format "yuv422p" hsub

is 2 and vsub is 1.

38.149.1 Examples# TOC

To change the display aspect ratio to 16:9, specify one of the following:

setdar=dar=1.77777
setdar=dar=16/9

To change the sample aspect ratio to 10:11, specify:

setsar=sar=10/11

To set a display aspect ratio of 16:9, and specify a maximum integer value of 1000 in the aspect ratio
reduction, use the command:

setdar=ratio=16/9:max=1000

38.150 setfield# TOC

Force field for the output video frame.

The setfield filter marks the interlace type field for the output frames. It does not change the input
frame, but only sets the corresponding property, which affects how the frame is treated by following filters
(e.g. fieldorder or yadif).

The filter accepts the following options:

mode

Available values are:

‘auto’

Keep the same field property.

‘bff’

Mark the frame as bottom-field-first.

‘tff’

Mark the frame as top-field-first.

‘prog’

Mark the frame as progressive.

38.151 showinfo# TOC

Show a line containing various information for each input video frame. The input video is not modified.

The shown line contains a sequence of key/value pairs of the form key:value.

The following values are shown in the output:

n

The (sequential) number of the input frame, starting from 0.

pts

The Presentation TimeStamp of the input frame, expressed as a number of time base units. The time
base unit depends on the filter input pad.

pts_time

The Presentation TimeStamp of the input frame, expressed as a number of seconds.

pos

The position of the frame in the input stream, or -1 if this information is unavailable and/or
meaningless (for example in case of synthetic video).

fmt

The pixel format name.

sar

The sample aspect ratio of the input frame, expressed in the form num/den.

s

The size of the input frame. For the syntax of this option, check the (ffmpeg-utils)"Video size"
section in the ffmpeg-utils manual.

i

The type of interlaced mode ("P" for "progressive", "T" for top field first, "B" for bottom field first).

iskey

This is 1 if the frame is a key frame, 0 otherwise.

type

The picture type of the input frame ("I" for an I-frame, "P" for a P-frame, "B" for a B-frame, or "?"
for an unknown type). Also refer to the documentation of the AVPictureType enum and of the
av_get_picture_type_char function defined in libavutil/avutil.h.

checksum

The Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame.

plane_checksum

The Adler-32 checksum (printed in hexadecimal) of each plane of the input frame, expressed in the
form "[c0 c1 c2 c3]".

38.152 showpalette# TOC

Displays the 256 colors palette of each frame. This filter is only relevant for pal8 pixel format frames.

It accepts the following option:

s

Set the size of the box used to represent one palette color entry. Default is 30 (for a 30x30 pixel
box).

38.153 shuffleframes# TOC

Reorder and/or duplicate and/or drop video frames.

It accepts the following parameters:

mapping

Set the destination indexes of input frames. This is space or ’|’ separated list of indexes that maps
input frames to output frames. Number of indexes also sets maximal value that each index may have. ’-1’
index have special meaning and that is to drop frame.

The first frame has the index 0. The default is to keep the input unchanged.

38.153.1 Examples# TOC

Swap second and third frame of every three frames of the input:

ffmpeg -i INPUT -vf "shuffleframes=0 2 1" OUTPUT

Swap 10th and 1st frame of every ten frames of the input:

ffmpeg -i INPUT -vf "shuffleframes=9 1 2 3 4 5 6 7 8 0" OUTPUT

38.154 shuffleplanes# TOC

Reorder and/or duplicate video planes.

It accepts the following parameters:

map0

The index of the input plane to be used as the first output plane.

map1

The index of the input plane to be used as the second output plane.

map2

The index of the input plane to be used as the third output plane.

map3

The index of the input plane to be used as the fourth output plane.

The first plane has the index 0. The default is to keep the input unchanged.

38.154.1 Examples# TOC

Swap the second and third planes of the input:

ffmpeg -i INPUT -vf shuffleplanes=0:2:1:3 OUTPUT

38.155 signalstats# TOC

Evaluate various visual metrics that assist in determining issues associated with the digitization of analog
video media.

By default the filter will log these metadata values:

YMIN

Display the minimal Y value contained within the input frame. Expressed in range of [0-255].

YLOW

Display the Y value at the 10% percentile within the input frame. Expressed in range of [0-255].

YAVG

Display the average Y value within the input frame. Expressed in range of [0-255].

YHIGH

Display the Y value at the 90% percentile within the input frame. Expressed in range of [0-255].

YMAX

Display the maximum Y value contained within the input frame. Expressed in range of [0-255].

UMIN

Display the minimal U value contained within the input frame. Expressed in range of [0-255].

ULOW

Display the U value at the 10% percentile within the input frame. Expressed in range of [0-255].

UAVG

Display the average U value within the input frame. Expressed in range of [0-255].

UHIGH

Display the U value at the 90% percentile within the input frame. Expressed in range of [0-255].

UMAX

Display the maximum U value contained within the input frame. Expressed in range of [0-255].

VMIN

Display the minimal V value contained within the input frame. Expressed in range of [0-255].

VLOW

Display the V value at the 10% percentile within the input frame. Expressed in range of [0-255].

VAVG

Display the average V value within the input frame. Expressed in range of [0-255].

VHIGH

Display the V value at the 90% percentile within the input frame. Expressed in range of [0-255].

VMAX

Display the maximum V value contained within the input frame. Expressed in range of [0-255].

SATMIN

Display the minimal saturation value contained within the input frame. Expressed in range of
[0-~181.02].

SATLOW

Display the saturation value at the 10% percentile within the input frame. Expressed in range of
[0-~181.02].

SATAVG

Display the average saturation value within the input frame. Expressed in range of [0-~181.02].

SATHIGH

Display the saturation value at the 90% percentile within the input frame. Expressed in range of
[0-~181.02].

SATMAX

Display the maximum saturation value contained within the input frame. Expressed in range of
[0-~181.02].

HUEMED

Display the median value for hue within the input frame. Expressed in range of [0-360].

HUEAVG

Display the average value for hue within the input frame. Expressed in range of [0-360].

YDIF

Display the average of sample value difference between all values of the Y plane in the current frame
and corresponding values of the previous input frame. Expressed in range of [0-255].

UDIF

Display the average of sample value difference between all values of the U plane in the current frame
and corresponding values of the previous input frame. Expressed in range of [0-255].

VDIF

Display the average of sample value difference between all values of the V plane in the current frame
and corresponding values of the previous input frame. Expressed in range of [0-255].

YBITDEPTH

Display bit depth of Y plane in current frame. Expressed in range of [0-16].

UBITDEPTH

Display bit depth of U plane in current frame. Expressed in range of [0-16].

VBITDEPTH

Display bit depth of V plane in current frame. Expressed in range of [0-16].

The filter accepts the following options:

stat
out

stat specify an additional form of image analysis. out output video with the specified type of pixel
highlighted.

Both options accept the following values:

‘tout’

Identify temporal outliers pixels. A temporal outlier is a pixel unlike the neighboring pixels of
the same field. Examples of temporal outliers include the results of video dropouts, head clogs,
or tape tracking issues.

‘vrep’

Identify vertical line repetition. Vertical line repetition includes similar rows of pixels within a
frame. In born-digital video vertical line repetition is common, but this pattern is uncommon in
video digitized from an analog source. When it occurs in video that results from the digitization

of an analog source it can indicate concealment from a dropout compensator.

‘brng’

Identify pixels that fall outside of legal broadcast range.

color, c

Set the highlight color for the out option. The default color is yellow.

38.155.1 Examples# TOC

Output data of various video metrics:

ffprobe -f lavfi movie=example.mov,signalstats="stat=tout+vrep+brng" -show_frames

Output specific data about the minimum and maximum values of the Y plane per frame:

ffprobe -f lavfi movie=example.mov,signalstats -show_entries frame_tags=lavfi.signalstats.YMAX,lavfi.signalstats.YMIN

Playback video while highlighting pixels that are outside of broadcast range in red.

ffplay example.mov -vf signalstats="out=brng:color=red"

Playback video with signalstats metadata drawn over the frame.

ffplay example.mov -vf signalstats=stat=brng+vrep+tout,drawtext=fontfile=FreeSerif.ttf:textfile=signalstat_drawtext.txt

The contents of signalstat_drawtext.txt used in the command are:

time %{pts:hms}
Y (%{metadata:lavfi.signalstats.YMIN}-%{metadata:lavfi.signalstats.YMAX})
U (%{metadata:lavfi.signalstats.UMIN}-%{metadata:lavfi.signalstats.UMAX})
V (%{metadata:lavfi.signalstats.VMIN}-%{metadata:lavfi.signalstats.VMAX})
saturation maximum: %{metadata:lavfi.signalstats.SATMAX}

38.156 signature# TOC

Calculates the MPEG-7 Video Signature. The filter can handle more than one input. In this case the
matching between the inputs can be calculated additionally. The filter always passes through the first
input. The signature of each stream can be written into a file.

It accepts the following options:

detectmode

Enable or disable the matching process.

Available values are:

‘off’

Disable the calculation of a matching (default).

‘full’

Calculate the matching for the whole video and output whether the whole video matches or only
parts.

‘fast’

Calculate only until a matching is found or the video ends. Should be faster in some cases.

nb_inputs

Set the number of inputs. The option value must be a non negative integer. Default value is 1.

filename

Set the path to which the output is written. If there is more than one input, the path must be a
prototype, i.e. must contain %d or %0nd (where n is a positive integer), that will be replaced with the
input number. If no filename is specified, no output will be written. This is the default.

format

Choose the output format.

Available values are:

‘binary’

Use the specified binary representation (default).

‘xml’

Use the specified xml representation.

th_d

Set threshold to detect one word as similar. The option value must be an integer greater than zero.
The default value is 9000.

th_dc

Set threshold to detect all words as similar. The option value must be an integer greater than zero.
The default value is 60000.

th_xh

Set threshold to detect frames as similar. The option value must be an integer greater than zero. The
default value is 116.

th_di

Set the minimum length of a sequence in frames to recognize it as matching sequence. The option
value must be a non negative integer value. The default value is 0.

th_it

Set the minimum relation, that matching frames to all frames must have. The option value must be a
double value between 0 and 1. The default value is 0.5.

38.156.1 Examples# TOC

To calculate the signature of an input video and store it in signature.bin:

ffmpeg -i input.mkv -vf signature=filename=signature.bin -map 0:v -f null -

To detect whether two videos match and store the signatures in XML format in signature0.xml and
signature1.xml:

ffmpeg -i input1.mkv -i input2.mkv -filter_complex "[0:v][1:v] signature=nb_inputs=2:detectmode=full:format=xml:filename=signature%d.xml" -map :v -f null -

38.157 smartblur# TOC

Blur the input video without impacting the outlines.

It accepts the following options:

luma_radius, lr

Set the luma radius. The option value must be a float number in the range [0.1,5.0] that specifies the
variance of the gaussian filter used to blur the image (slower if larger). Default value is 1.0.

luma_strength, ls

Set the luma strength. The option value must be a float number in the range [-1.0,1.0] that configures
the blurring. A value included in [0.0,1.0] will blur the image whereas a value included in [-1.0,0.0]
will sharpen the image. Default value is 1.0.

luma_threshold, lt

Set the luma threshold used as a coefficient to determine whether a pixel should be blurred or not.
The option value must be an integer in the range [-30,30]. A value of 0 will filter all the image, a
value included in [0,30] will filter flat areas and a value included in [-30,0] will filter edges. Default
value is 0.

chroma_radius, cr

Set the chroma radius. The option value must be a float number in the range [0.1,5.0] that specifies
the variance of the gaussian filter used to blur the image (slower if larger). Default value is
luma_radius.

chroma_strength, cs

Set the chroma strength. The option value must be a float number in the range [-1.0,1.0] that
configures the blurring. A value included in [0.0,1.0] will blur the image whereas a value included in
[-1.0,0.0] will sharpen the image. Default value is luma_strength.

chroma_threshold, ct

Set the chroma threshold used as a coefficient to determine whether a pixel should be blurred or not.
The option value must be an integer in the range [-30,30]. A value of 0 will filter all the image, a
value included in [0,30] will filter flat areas and a value included in [-30,0] will filter edges. Default
value is luma_threshold.

If a chroma option is not explicitly set, the corresponding luma value is set.

38.158 ssim# TOC

Obtain the SSIM (Structural SImilarity Metric) between two input videos.

This filter takes in input two input videos, the first input is considered the "main" source and is passed
unchanged to the output. The second input is used as a "reference" video for computing the SSIM.

Both video inputs must have the same resolution and pixel format for this filter to work correctly. Also it
assumes that both inputs have the same number of frames, which are compared one by one.

The filter stores the calculated SSIM of each frame.

The description of the accepted parameters follows.

stats_file, f

If specified the filter will use the named file to save the SSIM of each individual frame. When
filename equals "-" the data is sent to standard output.

The file printed if stats_file is selected, contains a sequence of key/value pairs of the form key:value for
each compared couple of frames.

A description of each shown parameter follows:

n

sequential number of the input frame, starting from 1

Y, U, V, R, G, B

SSIM of the compared frames for the component specified by the suffix.

All

SSIM of the compared frames for the whole frame.

dB

Same as above but in dB representation.

This filter also supports the framesync options.

For example:

movie=ref_movie.mpg, setpts=PTS-STARTPTS [main];
[main][ref] ssim="stats_file=stats.log" [out]

On this example the input file being processed is compared with the reference file ref_movie.mpg.
The SSIM of each individual frame is stored in stats.log.

Another example with both psnr and ssim at same time:

ffmpeg -i main.mpg -i ref.mpg -lavfi "ssim;[0:v][1:v]psnr" -f null -

38.159 stereo3d# TOC

Convert between different stereoscopic image formats.

The filters accept the following options:

in

Set stereoscopic image format of input.

Available values for input image formats are:

‘sbsl’

side by side parallel (left eye left, right eye right)

‘sbsr’

side by side crosseye (right eye left, left eye right)

‘sbs2l’

side by side parallel with half width resolution (left eye left, right eye right)

‘sbs2r’

side by side crosseye with half width resolution (right eye left, left eye right)

‘abl’

above-below (left eye above, right eye below)

‘abr’

above-below (right eye above, left eye below)

‘ab2l’

above-below with half height resolution (left eye above, right eye below)

‘ab2r’

above-below with half height resolution (right eye above, left eye below)

‘al’

alternating frames (left eye first, right eye second)

‘ar’

alternating frames (right eye first, left eye second)

‘irl’

interleaved rows (left eye has top row, right eye starts on next row)

‘irr’

interleaved rows (right eye has top row, left eye starts on next row)

‘icl’

interleaved columns, left eye first

‘icr’

interleaved columns, right eye first

Default value is ‘sbsl’.

out

Set stereoscopic image format of output.

‘sbsl’

side by side parallel (left eye left, right eye right)

‘sbsr’

side by side crosseye (right eye left, left eye right)

‘sbs2l’

side by side parallel with half width resolution (left eye left, right eye right)

‘sbs2r’

side by side crosseye with half width resolution (right eye left, left eye right)

‘abl’

above-below (left eye above, right eye below)

‘abr’

above-below (right eye above, left eye below)

‘ab2l’

above-below with half height resolution (left eye above, right eye below)

‘ab2r’

above-below with half height resolution (right eye above, left eye below)

‘al’

alternating frames (left eye first, right eye second)

‘ar’

alternating frames (right eye first, left eye second)

‘irl’

interleaved rows (left eye has top row, right eye starts on next row)

‘irr’

interleaved rows (right eye has top row, left eye starts on next row)

‘arbg’

anaglyph red/blue gray (red filter on left eye, blue filter on right eye)

‘argg’

anaglyph red/green gray (red filter on left eye, green filter on right eye)

‘arcg’

anaglyph red/cyan gray (red filter on left eye, cyan filter on right eye)

‘arch’

anaglyph red/cyan half colored (red filter on left eye, cyan filter on right eye)

‘arcc’

anaglyph red/cyan color (red filter on left eye, cyan filter on right eye)

‘arcd’

anaglyph red/cyan color optimized with the least squares projection of dubois (red filter on left
eye, cyan filter on right eye)

‘agmg’

anaglyph green/magenta gray (green filter on left eye, magenta filter on right eye)

‘agmh’

anaglyph green/magenta half colored (green filter on left eye, magenta filter on right eye)

‘agmc’

anaglyph green/magenta colored (green filter on left eye, magenta filter on right eye)

‘agmd’

anaglyph green/magenta color optimized with the least squares projection of dubois (green filter
on left eye, magenta filter on right eye)

‘aybg’

anaglyph yellow/blue gray (yellow filter on left eye, blue filter on right eye)

‘aybh’

anaglyph yellow/blue half colored (yellow filter on left eye, blue filter on right eye)

‘aybc’

anaglyph yellow/blue colored (yellow filter on left eye, blue filter on right eye)

‘aybd’

anaglyph yellow/blue color optimized with the least squares projection of dubois (yellow filter
on left eye, blue filter on right eye)

‘ml’

mono output (left eye only)

‘mr’

mono output (right eye only)

‘chl’

checkerboard, left eye first

‘chr’

checkerboard, right eye first

‘icl’

interleaved columns, left eye first

‘icr’

interleaved columns, right eye first

‘hdmi’

HDMI frame pack

Default value is ‘arcd’.

38.159.1 Examples# TOC

Convert input video from side by side parallel to anaglyph yellow/blue dubois:

stereo3d=sbsl:aybd

Convert input video from above below (left eye above, right eye below) to side by side crosseye.

stereo3d=abl:sbsr

38.160 streamselect, astreamselect# TOC

Select video or audio streams.

The filter accepts the following options:

inputs

Set number of inputs. Default is 2.

map

Set input indexes to remap to outputs.

38.160.1 Commands# TOC

The streamselect and astreamselect filter supports the following commands:

map

Set input indexes to remap to outputs.

38.160.2 Examples# TOC

Select first 5 seconds 1st stream and rest of time 2nd stream:

sendcmd=’5.0 streamselect map 1’,streamselect=inputs=2:map=0

Same as above, but for audio:

asendcmd=’5.0 astreamselect map 1’,astreamselect=inputs=2:map=0

38.161 sobel# TOC

Apply sobel operator to input video stream.

The filter accepts the following option:

planes

Set which planes will be processed, unprocessed planes will be copied. By default value 0xf, all
planes will be processed.

scale

Set value which will be multiplied with filtered result.

delta

Set value which will be added to filtered result.

38.162 spp# TOC

Apply a simple postprocessing filter that compresses and decompresses the image at several (or - in the
case of quality level 6 - all) shifts and average the results.

The filter accepts the following options:

quality

Set quality. This option defines the number of levels for averaging. It accepts an integer in the range
0-6. If set to 0, the filter will have no effect. A value of 6 means the higher quality. For each
increment of that value the speed drops by a factor of approximately 2. Default value is 3.

qp

Force a constant quantization parameter. If not set, the filter will use the QP from the video stream (if
available).

mode

Set thresholding mode. Available modes are:

‘hard’

Set hard thresholding (default).

‘soft’

Set soft thresholding (better de-ringing effect, but likely blurrier).

use_bframe_qp

Enable the use of the QP from the B-Frames if set to 1. Using this option may cause flicker since the
B-Frames have often larger QP. Default is 0 (not enabled).

38.163 subtitles# TOC

Draw subtitles on top of input video using the libass library.

To enable compilation of this filter you need to configure FFmpeg with --enable-libass. This filter
also requires a build with libavcodec and libavformat to convert the passed subtitles file to ASS
(Advanced Substation Alpha) subtitles format.

The filter accepts the following options:

filename, f

Set the filename of the subtitle file to read. It must be specified.

original_size

Specify the size of the original video, the video for which the ASS file was composed. For the syntax
of this option, check the (ffmpeg-utils)"Video size" section in the ffmpeg-utils manual. Due to a
misdesign in ASS aspect ratio arithmetic, this is necessary to correctly scale the fonts if the aspect
ratio has been changed.

fontsdir

Set a directory path containing fonts that can be used by the filter. These fonts will be used in
addition to whatever the font provider uses.

alpha

Process alpha channel, by default alpha channel is untouched.

charenc

Set subtitles input character encoding. subtitles filter only. Only useful if not UTF-8.

stream_index, si

Set subtitles stream index. subtitles filter only.

force_style

Override default style or script info parameters of the subtitles. It accepts a string containing ASS
style format KEY=VALUE couples separated by ",".

If the first key is not specified, it is assumed that the first value specifies the filename.

For example, to render the file sub.srt on top of the input video, use the command:

subtitles=sub.srt

which is equivalent to:

subtitles=filename=sub.srt

To render the default subtitles stream from file video.mkv, use:

subtitles=video.mkv

To render the second subtitles stream from that file, use:

subtitles=video.mkv:si=1

To make the subtitles stream from sub.srt appear in transparent green DejaVu Serif, use:

subtitles=sub.srt:force_style=’FontName=DejaVu Serif,PrimaryColour=&HAA00FF00’

38.164 super2xsai# TOC

Scale the input by 2x and smooth using the Super2xSaI (Scale and Interpolate) pixel art scaling algorithm.

Useful for enlarging pixel art images without reducing sharpness.

38.165 swaprect# TOC

Swap two rectangular objects in video.

This filter accepts the following options:

w

Set object width.

h

Set object height.

x1

Set 1st rect x coordinate.

y1

Set 1st rect y coordinate.

x2

Set 2nd rect x coordinate.

y2

Set 2nd rect y coordinate.

All expressions are evaluated once for each frame.

The all options are expressions containing the following constants:

w
h

The input width and height.

a

same as w / h

sar

input sample aspect ratio

dar

input display aspect ratio, it is the same as (w / h) * sar

n

The number of the input frame, starting from 0.

t

The timestamp expressed in seconds. It’s NAN if the input timestamp is unknown.

pos

the position in the file of the input frame, NAN if unknown

38.166 swapuv# TOC

Swap U & V plane.

38.167 telecine# TOC

Apply telecine process to the video.

This filter accepts the following options:

first_field
‘top, t’

top field first

‘bottom, b’

bottom field first The default value is top.

pattern

A string of numbers representing the pulldown pattern you wish to apply. The default value is 23.

Some typical patterns:

NTSC output (30i):
27.5p: 32222
24p: 23 (classic)
24p: 2332 (preferred)
20p: 33
18p: 334
16p: 3444

PAL output (25i):
27.5p: 12222
24p: 222222222223 ("Euro pulldown")
16.67p: 33
16p: 33333334

38.168 threshold# TOC

Apply threshold effect to video stream.

This filter needs four video streams to perform thresholding. First stream is stream we are filtering.
Second stream is holding threshold values, third stream is holding min values, and last, fourth stream is
holding max values.

The filter accepts the following option:

planes

Set which planes will be processed, unprocessed planes will be copied. By default value 0xf, all
planes will be processed.

For example if first stream pixel’s component value is less then threshold value of pixel component from
2nd threshold stream, third stream value will picked, otherwise fourth stream pixel component value will
be picked.

Using color source filter one can perform various types of thresholding:

38.168.1 Examples# TOC

Binary threshold, using gray color as threshold:

ffmpeg -i 320x240.avi -f lavfi -i color=gray -f lavfi -i color=black -f lavfi -i color=white -lavfi threshold output.avi

Inverted binary threshold, using gray color as threshold:

ffmpeg -i 320x240.avi -f lavfi -i color=gray -f lavfi -i color=white -f lavfi -i color=black -lavfi threshold output.avi

Truncate binary threshold, using gray color as threshold:

ffmpeg -i 320x240.avi -f lavfi -i color=gray -i 320x240.avi -f lavfi -i color=gray -lavfi threshold output.avi

Threshold to zero, using gray color as threshold:

ffmpeg -i 320x240.avi -f lavfi -i color=gray -f lavfi -i color=white -i 320x240.avi -lavfi threshold output.avi

Inverted threshold to zero, using gray color as threshold:

ffmpeg -i 320x240.avi -f lavfi -i color=gray -i 320x240.avi -f lavfi -i color=white -lavfi threshold output.avi

38.169 thumbnail# TOC

Select the most representative frame in a given sequence of consecutive frames.

The filter accepts the following options:

n

Set the frames batch size to analyze; in a set of n frames, the filter will pick one of them, and then
handle the next batch of n frames until the end. Default is 100.

Since the filter keeps track of the whole frames sequence, a bigger n value will result in a higher memory
usage, so a high value is not recommended.

38.169.1 Examples# TOC

Extract one picture each 50 frames:

thumbnail=50

Complete example of a thumbnail creation with ffmpeg:

ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png

38.170 tile# TOC

Tile several successive frames together.

The filter accepts the following options:

layout

Set the grid size (i.e. the number of lines and columns). For the syntax of this option, check the
(ffmpeg-utils)"Video size" section in the ffmpeg-utils manual.

nb_frames

Set the maximum number of frames to render in the given area. It must be less than or equal to wxh.
The default value is 0, meaning all the area will be used.

margin

Set the outer border margin in pixels.

padding

Set the inner border thickness (i.e. the number of pixels between frames). For more advanced padding
options (such as having different values for the edges), refer to the pad video filter.

color

Specify the color of the unused area. For the syntax of this option, check the "Color" section in the
ffmpeg-utils manual. The default value of color is "black".

overlap

Set the number of frames to overlap when tiling several successive frames together. The value must
be between 0 and nb_frames - 1.

init_padding

Set the number of frames to initially be empty before displaying first output frame. This controls how
soon will one get first output frame. The value must be between 0 and nb_frames - 1.

38.170.1 Examples# TOC

Produce 8x8 PNG tiles of all keyframes (-skip_frame nokey) in a movie:

ffmpeg -skip_frame nokey -i file.avi -vf ’scale=128:72,tile=8x8’ -an -vsync 0 keyframes%03d.png

The -vsync 0 is necessary to prevent ffmpeg from duplicating each output frame to
accommodate the originally detected frame rate.

Display 5 pictures in an area of 3x2 frames, with 7 pixels between them, and 2 pixels of initial
margin, using mixed flat and named options:

tile=3x2:nb_frames=5:padding=7:margin=2

38.171 tinterlace# TOC

Perform various types of temporal field interlacing.

Frames are counted starting from 1, so the first input frame is considered odd.

The filter accepts the following options:

mode

Specify the mode of the interlacing. This option can also be specified as a value alone. See below for
a list of values for this option.

Available values are:

‘merge, 0’

Move odd frames into the upper field, even into the lower field, generating a double height
frame at half frame rate.

 ------> time
Input:
Frame 1 Frame 2 Frame 3 Frame 4

11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444

Output:
11111 33333
22222 44444
11111 33333
22222 44444
11111 33333
22222 44444
11111 33333
22222 44444

‘drop_even, 1’

Only output odd frames, even frames are dropped, generating a frame with unchanged height at
half frame rate.

 ------> time
Input:
Frame 1 Frame 2 Frame 3 Frame 4

11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444

Output:
11111 33333
11111 33333
11111 33333
11111 33333

‘drop_odd, 2’

Only output even frames, odd frames are dropped, generating a frame with unchanged height at
half frame rate.

 ------> time
Input:
Frame 1 Frame 2 Frame 3 Frame 4

11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444

Output:
 22222 44444
 22222 44444
 22222 44444
 22222 44444

‘pad, 3’

Expand each frame to full height, but pad alternate lines with black, generating a frame with
double height at the same input frame rate.

 ------> time
Input:
Frame 1 Frame 2 Frame 3 Frame 4

11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444

Output:
11111 33333
..... 22222 44444
11111 33333
..... 22222 44444
11111 33333
..... 22222 44444
11111 33333
..... 22222 44444

‘interleave_top, 4’

Interleave the upper field from odd frames with the lower field from even frames, generating a
frame with unchanged height at half frame rate.

 ------> time
Input:
Frame 1 Frame 2 Frame 3 Frame 4

11111<- 22222 33333<- 44444
11111 22222<- 33333 44444<-

11111<- 22222 33333<- 44444
11111 22222<- 33333 44444<-

Output:
11111 33333
22222 44444
11111 33333
22222 44444

‘interleave_bottom, 5’

Interleave the lower field from odd frames with the upper field from even frames, generating a
frame with unchanged height at half frame rate.

 ------> time
Input:
Frame 1 Frame 2 Frame 3 Frame 4

11111 22222<- 33333 44444<-
11111<- 22222 33333<- 44444
11111 22222<- 33333 44444<-
11111<- 22222 33333<- 44444

Output:
22222 44444
11111 33333
22222 44444
11111 33333

‘interlacex2, 6’

Double frame rate with unchanged height. Frames are inserted each containing the second
temporal field from the previous input frame and the first temporal field from the next input
frame. This mode relies on the top_field_first flag. Useful for interlaced video displays with no
field synchronisation.

 ------> time
Input:
Frame 1 Frame 2 Frame 3 Frame 4

11111 22222 33333 44444
 11111 22222 33333 44444
11111 22222 33333 44444
 11111 22222 33333 44444

Output:
11111 22222 22222 33333 33333 44444 44444
 11111 11111 22222 22222 33333 33333 44444
11111 22222 22222 33333 33333 44444 44444
 11111 11111 22222 22222 33333 33333 44444

‘mergex2, 7’

Move odd frames into the upper field, even into the lower field, generating a double height
frame at same frame rate.

 ------> time
Input:
Frame 1 Frame 2 Frame 3 Frame 4

11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444
11111 22222 33333 44444

Output:
11111 33333 33333 55555
22222 22222 44444 44444
11111 33333 33333 55555
22222 22222 44444 44444
11111 33333 33333 55555
22222 22222 44444 44444
11111 33333 33333 55555
22222 22222 44444 44444

Numeric values are deprecated but are accepted for backward compatibility reasons.

Default mode is merge.

flags

Specify flags influencing the filter process.

Available value for flags is:

low_pass_filter, vlfp

Enable linear vertical low-pass filtering in the filter. Vertical low-pass filtering is required when
creating an interlaced destination from a progressive source which contains high-frequency
vertical detail. Filtering will reduce interlace ’twitter’ and Moire patterning.

complex_filter, cvlfp

Enable complex vertical low-pass filtering. This will slightly less reduce interlace ’twitter’ and
Moire patterning but better retain detail and subjective sharpness impression.

Vertical low-pass filtering can only be enabled for mode interleave_top and interleave_bottom.

38.172 tonemap# TOC

Tone map colors from different dynamic ranges.

This filter expects data in single precision floating point, as it needs to operate on (and can output)
out-of-range values. Another filter, such as zscale, is needed to convert the resulting frame to a usable
format.

The tonemapping algorithms implemented only work on linear light, so input data should be linearized
beforehand (and possibly correctly tagged).

ffmpeg -i INPUT -vf zscale=transfer=linear,tonemap=clip,zscale=transfer=bt709,format=yuv420p OUTPUT

38.172.1 Options# TOC

The filter accepts the following options.

tonemap

Set the tone map algorithm to use.

Possible values are:

none

Do not apply any tone map, only desaturate overbright pixels.

clip

Hard-clip any out-of-range values. Use it for perfect color accuracy for in-range values, while
distorting out-of-range values.

linear

Stretch the entire reference gamut to a linear multiple of the display.

gamma

Fit a logarithmic transfer between the tone curves.

reinhard

Preserve overall image brightness with a simple curve, using nonlinear contrast, which results in
flattening details and degrading color accuracy.

hable

Preserve both dark and bright details better than reinhard, at the cost of slightly darkening
everything. Use it when detail preservation is more important than color and brightness
accuracy.

mobius

Smoothly map out-of-range values, while retaining contrast and colors for in-range material as
much as possible. Use it when color accuracy is more important than detail preservation.

Default is none.

param

Tune the tone mapping algorithm.

This affects the following algorithms:

none

Ignored.

linear

Specifies the scale factor to use while stretching. Default to 1.0.

gamma

Specifies the exponent of the function. Default to 1.8.

clip

Specify an extra linear coefficient to multiply into the signal before clipping. Default to 1.0.

reinhard

Specify the local contrast coefficient at the display peak. Default to 0.5, which means that
in-gamut values will be about half as bright as when clipping.

hable

Ignored.

mobius

Specify the transition point from linear to mobius transform. Every value below this point is
guaranteed to be mapped 1:1. The higher the value, the more accurate the result will be, at the
cost of losing bright details. Default to 0.3, which due to the steep initial slope still preserves
in-range colors fairly accurately.

desat

Apply desaturation for highlights that exceed this level of brightness. The higher the parameter, the
more color information will be preserved. This setting helps prevent unnaturally blown-out colors for
super-highlights, by (smoothly) turning into white instead. This makes images feel more natural, at
the cost of reducing information about out-of-range colors.

The default of 2.0 is somewhat conservative and will mostly just apply to skies or directly sunlit
surfaces. A setting of 0.0 disables this option.

This option works only if the input frame has a supported color tag.

peak

Override signal/nominal/reference peak with this value. Useful when the embedded peak information
in display metadata is not reliable or when tone mapping from a lower range to a higher range.

38.173 transpose# TOC

Transpose rows with columns in the input video and optionally flip it.

It accepts the following parameters:

dir

Specify the transposition direction.

Can assume the following values:

‘0, 4, cclock_flip’

Rotate by 90 degrees counterclockwise and vertically flip (default), that is:

L.R L.l
. . -> . .
l.r R.r

‘1, 5, clock’

Rotate by 90 degrees clockwise, that is:

L.R l.L
. . -> . .
l.r r.R

‘2, 6, cclock’

Rotate by 90 degrees counterclockwise, that is:

L.R R.r
. . -> . .
l.r L.l

‘3, 7, clock_flip’

Rotate by 90 degrees clockwise and vertically flip, that is:

L.R r.R
. . -> . .
l.r l.L

For values between 4-7, the transposition is only done if the input video geometry is portrait and not
landscape. These values are deprecated, the passthrough option should be used instead.

Numerical values are deprecated, and should be dropped in favor of symbolic constants.

passthrough

Do not apply the transposition if the input geometry matches the one specified by the specified value.
It accepts the following values:

‘none’

Always apply transposition.

‘portrait’

Preserve portrait geometry (when height >= width).

‘landscape’

Preserve landscape geometry (when width >= height).

Default value is none.

For example to rotate by 90 degrees clockwise and preserve portrait layout:

transpose=dir=1:passthrough=portrait

The command above can also be specified as:

transpose=1:portrait

38.174 trim# TOC

Trim the input so that the output contains one continuous subpart of the input.

It accepts the following parameters:

start

Specify the time of the start of the kept section, i.e. the frame with the timestamp start will be the first
frame in the output.

end

Specify the time of the first frame that will be dropped, i.e. the frame immediately preceding the one
with the timestamp end will be the last frame in the output.

start_pts

This is the same as start, except this option sets the start timestamp in timebase units instead of
seconds.

end_pts

This is the same as end, except this option sets the end timestamp in timebase units instead of
seconds.

duration

The maximum duration of the output in seconds.

start_frame

The number of the first frame that should be passed to the output.

end_frame

The number of the first frame that should be dropped.

start, end, and duration are expressed as time duration specifications; see (ffmpeg-utils)the Time
duration section in the ffmpeg-utils(1) manual for the accepted syntax.

Note that the first two sets of the start/end options and the duration option look at the frame timestamp,
while the _frame variants simply count the frames that pass through the filter. Also note that this filter
does not modify the timestamps. If you wish for the output timestamps to start at zero, insert a setpts filter
after the trim filter.

If multiple start or end options are set, this filter tries to be greedy and keep all the frames that match at
least one of the specified constraints. To keep only the part that matches all the constraints at once, chain
multiple trim filters.

The defaults are such that all the input is kept. So it is possible to set e.g. just the end values to keep
everything before the specified time.

Examples:

Drop everything except the second minute of input:

ffmpeg -i INPUT -vf trim=60:120

Keep only the first second:

ffmpeg -i INPUT -vf trim=duration=1

38.175 unpremultiply# TOC

Apply alpha unpremultiply effect to input video stream using first plane of second stream as alpha.

Both streams must have same dimensions and same pixel format.

The filter accepts the following option:

planes

Set which planes will be processed, unprocessed planes will be copied. By default value 0xf, all
planes will be processed.

If the format has 1 or 2 components, then luma is bit 0. If the format has 3 or 4 components: for RGB
formats bit 0 is green, bit 1 is blue and bit 2 is red; for YUV formats bit 0 is luma, bit 1 is chroma-U
and bit 2 is chroma-V. If present, the alpha channel is always the last bit.

inplace

Do not require 2nd input for processing, instead use alpha plane from input stream.

38.176 unsharp# TOC

Sharpen or blur the input video.

It accepts the following parameters:

luma_msize_x, lx

Set the luma matrix horizontal size. It must be an odd integer between 3 and 23. The default value is
5.

luma_msize_y, ly

Set the luma matrix vertical size. It must be an odd integer between 3 and 23. The default value is 5.

luma_amount, la

Set the luma effect strength. It must be a floating point number, reasonable values lay between -1.5
and 1.5.

Negative values will blur the input video, while positive values will sharpen it, a value of zero will
disable the effect.

Default value is 1.0.

chroma_msize_x, cx

Set the chroma matrix horizontal size. It must be an odd integer between 3 and 23. The default value
is 5.

chroma_msize_y, cy

Set the chroma matrix vertical size. It must be an odd integer between 3 and 23. The default value is
5.

chroma_amount, ca

Set the chroma effect strength. It must be a floating point number, reasonable values lay between -1.5
and 1.5.

Negative values will blur the input video, while positive values will sharpen it, a value of zero will
disable the effect.

Default value is 0.0.

All parameters are optional and default to the equivalent of the string ’5:5:1.0:5:5:0.0’.

38.176.1 Examples# TOC

Apply strong luma sharpen effect:

unsharp=luma_msize_x=7:luma_msize_y=7:luma_amount=2.5

Apply a strong blur of both luma and chroma parameters:

unsharp=7:7:-2:7:7:-2

38.177 uspp# TOC

Apply ultra slow/simple postprocessing filter that compresses and decompresses the image at several (or -
in the case of quality level 8 - all) shifts and average the results.

The way this differs from the behavior of spp is that uspp actually encodes & decodes each case with
libavcodec Snow, whereas spp uses a simplified intra only 8x8 DCT similar to MJPEG.

The filter accepts the following options:

quality

Set quality. This option defines the number of levels for averaging. It accepts an integer in the range
0-8. If set to 0, the filter will have no effect. A value of 8 means the higher quality. For each
increment of that value the speed drops by a factor of approximately 2. Default value is 3.

qp

Force a constant quantization parameter. If not set, the filter will use the QP from the video stream (if
available).

38.178 vaguedenoiser# TOC

Apply a wavelet based denoiser.

It transforms each frame from the video input into the wavelet domain, using
Cohen-Daubechies-Feauveau 9/7. Then it applies some filtering to the obtained coefficients. It does an
inverse wavelet transform after. Due to wavelet properties, it should give a nice smoothed result, and
reduced noise, without blurring picture features.

This filter accepts the following options:

threshold

The filtering strength. The higher, the more filtered the video will be. Hard thresholding can use a
higher threshold than soft thresholding before the video looks overfiltered. Default value is 2.

method

The filtering method the filter will use.

It accepts the following values:

‘hard’

All values under the threshold will be zeroed.

‘soft’

All values under the threshold will be zeroed. All values above will be reduced by the threshold.

‘garrote’

Scales or nullifies coefficients - intermediary between (more) soft and (less) hard thresholding.

Default is garrote.

nsteps

Number of times, the wavelet will decompose the picture. Picture can’t be decomposed beyond a
particular point (typically, 8 for a 640x480 frame - as 2^9 = 512 > 480). Valid values are integers
between 1 and 32. Default value is 6.

percent

Partial of full denoising (limited coefficients shrinking), from 0 to 100. Default value is 85.

planes

A list of the planes to process. By default all planes are processed.

38.179 vectorscope# TOC

Display 2 color component values in the two dimensional graph (which is called a vectorscope).

This filter accepts the following options:

mode, m

Set vectorscope mode.

It accepts the following values:

‘gray’

Gray values are displayed on graph, higher brightness means more pixels have same component
color value on location in graph. This is the default mode.

‘color’

Gray values are displayed on graph. Surrounding pixels values which are not present in video
frame are drawn in gradient of 2 color components which are set by option x and y. The 3rd
color component is static.

‘color2’

Actual color components values present in video frame are displayed on graph.

‘color3’

Similar as color2 but higher frequency of same values x and y on graph increases value of
another color component, which is luminance by default values of x and y.

‘color4’

Actual colors present in video frame are displayed on graph. If two different colors map to same
position on graph then color with higher value of component not present in graph is picked.

‘color5’

Gray values are displayed on graph. Similar to color but with 3rd color component picked
from radial gradient.

x

Set which color component will be represented on X-axis. Default is 1.

y

Set which color component will be represented on Y-axis. Default is 2.

intensity, i

Set intensity, used by modes: gray, color, color3 and color5 for increasing brightness of color
component which represents frequency of (X, Y) location in graph.

envelope, e
‘none’

No envelope, this is default.

‘instant’

Instant envelope, even darkest single pixel will be clearly highlighted.

‘peak’

Hold maximum and minimum values presented in graph over time. This way you can still spot
out of range values without constantly looking at vectorscope.

‘peak+instant’

Peak and instant envelope combined together.

graticule, g

Set what kind of graticule to draw.

‘none’
‘green’
‘color’

opacity, o

Set graticule opacity.

flags, f

Set graticule flags.

‘white’

Draw graticule for white point.

‘black’

Draw graticule for black point.

‘name’

Draw color points short names.

bgopacity, b

Set background opacity.

lthreshold, l

Set low threshold for color component not represented on X or Y axis. Values lower than this value
will be ignored. Default is 0. Note this value is multiplied with actual max possible value one pixel
component can have. So for 8-bit input and low threshold value of 0.1 actual threshold is 0.1 * 255 =
25.

hthreshold, h

Set high threshold for color component not represented on X or Y axis. Values higher than this value
will be ignored. Default is 1. Note this value is multiplied with actual max possible value one pixel
component can have. So for 8-bit input and high threshold value of 0.9 actual threshold is 0.9 * 255 =
230.

colorspace, c

Set what kind of colorspace to use when drawing graticule.

‘auto’
‘601’
‘709’

Default is auto.

38.180 vidstabdetect# TOC

Analyze video stabilization/deshaking. Perform pass 1 of 2, see vidstabtransform for pass 2.

This filter generates a file with relative translation and rotation transform information about subsequent
frames, which is then used by the vidstabtransform filter.

To enable compilation of this filter you need to configure FFmpeg with --enable-libvidstab.

This filter accepts the following options:

result

Set the path to the file used to write the transforms information. Default value is
transforms.trf.

shakiness

Set how shaky the video is and how quick the camera is. It accepts an integer in the range 1-10, a
value of 1 means little shakiness, a value of 10 means strong shakiness. Default value is 5.

accuracy

Set the accuracy of the detection process. It must be a value in the range 1-15. A value of 1 means
low accuracy, a value of 15 means high accuracy. Default value is 15.

stepsize

Set stepsize of the search process. The region around minimum is scanned with 1 pixel resolution.
Default value is 6.

mincontrast

Set minimum contrast. Below this value a local measurement field is discarded. Must be a floating
point value in the range 0-1. Default value is 0.3.

tripod

Set reference frame number for tripod mode.

If enabled, the motion of the frames is compared to a reference frame in the filtered stream, identified
by the specified number. The idea is to compensate all movements in a more-or-less static scene and
keep the camera view absolutely still.

If set to 0, it is disabled. The frames are counted starting from 1.

show

Show fields and transforms in the resulting frames. It accepts an integer in the range 0-2. Default
value is 0, which disables any visualization.

38.180.1 Examples# TOC

Use default values:

vidstabdetect

Analyze strongly shaky movie and put the results in file mytransforms.trf:

vidstabdetect=shakiness=10:accuracy=15:result="mytransforms.trf"

Visualize the result of internal transformations in the resulting video:

vidstabdetect=show=1

Analyze a video with medium shakiness using ffmpeg:

ffmpeg -i input -vf vidstabdetect=shakiness=5:show=1 dummy.avi

38.181 vidstabtransform# TOC

Video stabilization/deshaking: pass 2 of 2, see vidstabdetect for pass 1.

Read a file with transform information for each frame and apply/compensate them. Together with the
vidstabdetect filter this can be used to deshake videos. See also http://public.hronopik.de/vid.stab. It is
important to also use the unsharp filter, see below.

To enable compilation of this filter you need to configure FFmpeg with --enable-libvidstab.

38.181.1 Options# TOC

input

Set path to the file used to read the transforms. Default value is transforms.trf.

smoothing

Set the number of frames (value*2 + 1) used for lowpass filtering the camera movements. Default
value is 10.

For example a number of 10 means that 21 frames are used (10 in the past and 10 in the future) to
smoothen the motion in the video. A larger value leads to a smoother video, but limits the
acceleration of the camera (pan/tilt movements). 0 is a special case where a static camera is
simulated.

optalgo

Set the camera path optimization algorithm.

Accepted values are:

‘gauss’

gaussian kernel low-pass filter on camera motion (default)

‘avg’

http://public.hronopik.de/vid.stab

averaging on transformations

maxshift

Set maximal number of pixels to translate frames. Default value is -1, meaning no limit.

maxangle

Set maximal angle in radians (degree*PI/180) to rotate frames. Default value is -1, meaning no limit.

crop

Specify how to deal with borders that may be visible due to movement compensation.

Available values are:

‘keep’

keep image information from previous frame (default)

‘black’

fill the border black

invert

Invert transforms if set to 1. Default value is 0.

relative

Consider transforms as relative to previous frame if set to 1, absolute if set to 0. Default value is 0.

zoom

Set percentage to zoom. A positive value will result in a zoom-in effect, a negative value in a
zoom-out effect. Default value is 0 (no zoom).

optzoom

Set optimal zooming to avoid borders.

Accepted values are:

‘0’

disabled

‘1’

optimal static zoom value is determined (only very strong movements will lead to visible
borders) (default)

‘2’

optimal adaptive zoom value is determined (no borders will be visible), see zoomspeed

Note that the value given at zoom is added to the one calculated here.

zoomspeed

Set percent to zoom maximally each frame (enabled when optzoom is set to 2). Range is from 0 to
5, default value is 0.25.

interpol

Specify type of interpolation.

Available values are:

‘no’

no interpolation

‘linear’

linear only horizontal

‘bilinear’

linear in both directions (default)

‘bicubic’

cubic in both directions (slow)

tripod

Enable virtual tripod mode if set to 1, which is equivalent to relative=0:smoothing=0.
Default value is 0.

Use also tripod option of vidstabdetect.

debug

Increase log verbosity if set to 1. Also the detected global motions are written to the temporary file
global_motions.trf. Default value is 0.

38.181.2 Examples# TOC

Use ffmpeg for a typical stabilization with default values:

ffmpeg -i inp.mpeg -vf vidstabtransform,unsharp=5:5:0.8:3:3:0.4 inp_stabilized.mpeg

Note the use of the unsharp filter which is always recommended.

Zoom in a bit more and load transform data from a given file:

vidstabtransform=zoom=5:input="mytransforms.trf"

Smoothen the video even more:

vidstabtransform=smoothing=30

38.182 vflip# TOC

Flip the input video vertically.

For example, to vertically flip a video with ffmpeg:

ffmpeg -i in.avi -vf "vflip" out.avi

38.183 vignette# TOC

Make or reverse a natural vignetting effect.

The filter accepts the following options:

angle, a

Set lens angle expression as a number of radians.

The value is clipped in the [0,PI/2] range.

Default value: "PI/5"

x0
y0

Set center coordinates expressions. Respectively "w/2" and "h/2" by default.

mode

Set forward/backward mode.

Available modes are:

‘forward’

The larger the distance from the central point, the darker the image becomes.

‘backward’

The larger the distance from the central point, the brighter the image becomes. This can be used
to reverse a vignette effect, though there is no automatic detection to extract the lens angle and
other settings (yet). It can also be used to create a burning effect.

Default value is ‘forward’.

eval

Set evaluation mode for the expressions (angle, x0, y0).

It accepts the following values:

‘init’

Evaluate expressions only once during the filter initialization.

‘frame’

Evaluate expressions for each incoming frame. This is way slower than the ‘init’ mode since
it requires all the scalers to be re-computed, but it allows advanced dynamic expressions.

Default value is ‘init’.

dither

Set dithering to reduce the circular banding effects. Default is 1 (enabled).

aspect

Set vignette aspect. This setting allows one to adjust the shape of the vignette. Setting this value to
the SAR of the input will make a rectangular vignetting following the dimensions of the video.

Default is 1/1.

38.183.1 Expressions# TOC

The alpha, x0 and y0 expressions can contain the following parameters.

w
h

input width and height

n

the number of input frame, starting from 0

pts

the PTS (Presentation TimeStamp) time of the filtered video frame, expressed in TB units, NAN if
undefined

r

frame rate of the input video, NAN if the input frame rate is unknown

t

the PTS (Presentation TimeStamp) of the filtered video frame, expressed in seconds, NAN if
undefined

tb

time base of the input video

38.183.2 Examples# TOC

Apply simple strong vignetting effect:

vignette=PI/4

Make a flickering vignetting:

vignette=’PI/4+random(1)*PI/50’:eval=frame

38.184 vmafmotion# TOC

Obtain the average vmaf motion score of a video. It is one of the component filters of VMAF.

The obtained average motion score is printed through the logging system.

In the below example the input file ref.mpg is being processed and score is computed.

ffmpeg -i ref.mpg -lavfi vmafmotion -f null -

38.185 vstack# TOC

Stack input videos vertically.

All streams must be of same pixel format and of same width.

Note that this filter is faster than using overlay and pad filter to create same output.

The filter accept the following option:

inputs

Set number of input streams. Default is 2.

shortest

If set to 1, force the output to terminate when the shortest input terminates. Default value is 0.

38.186 w3fdif# TOC

Deinterlace the input video ("w3fdif" stands for "Weston 3 Field Deinterlacing Filter").

Based on the process described by Martin Weston for BBC R&D, and implemented based on the
de-interlace algorithm written by Jim Easterbrook for BBC R&D, the Weston 3 field deinterlacing filter
uses filter coefficients calculated by BBC R&D.

There are two sets of filter coefficients, so called "simple": and "complex". Which set of filter coefficients
is used can be set by passing an optional parameter:

filter

Set the interlacing filter coefficients. Accepts one of the following values:

‘simple’

Simple filter coefficient set.

‘complex’

More-complex filter coefficient set.

Default value is ‘complex’.

deint

Specify which frames to deinterlace. Accept one of the following values:

‘all’

Deinterlace all frames,

‘interlaced’

Only deinterlace frames marked as interlaced.

Default value is ‘all’.

38.187 waveform# TOC

Video waveform monitor.

The waveform monitor plots color component intensity. By default luminance only. Each column of the
waveform corresponds to a column of pixels in the source video.

It accepts the following options:

mode, m

Can be either row, or column. Default is column. In row mode, the graph on the left side
represents color component value 0 and the right side represents value = 255. In column mode, the
top side represents color component value = 0 and bottom side represents value = 255.

intensity, i

Set intensity. Smaller values are useful to find out how many values of the same luminance are
distributed across input rows/columns. Default value is 0.04. Allowed range is [0, 1].

mirror, r

Set mirroring mode. 0 means unmirrored, 1 means mirrored. In mirrored mode, higher values will be
represented on the left side for row mode and at the top for column mode. Default is 1 (mirrored).

display, d

Set display mode. It accepts the following values:

‘overlay’

Presents information identical to that in the parade, except that the graphs representing color
components are superimposed directly over one another.

This display mode makes it easier to spot relative differences or similarities in overlapping areas
of the color components that are supposed to be identical, such as neutral whites, grays, or
blacks.

‘stack’

Display separate graph for the color components side by side in row mode or one below the
other in column mode.

‘parade’

Display separate graph for the color components side by side in column mode or one below the
other in row mode.

Using this display mode makes it easy to spot color casts in the highlights and shadows of an
image, by comparing the contours of the top and the bottom graphs of each waveform. Since
whites, grays, and blacks are characterized by exactly equal amounts of red, green, and blue,
neutral areas of the picture should display three waveforms of roughly equal width/height. If not,
the correction is easy to perform by making level adjustments the three waveforms.

Default is stack.

components, c

Set which color components to display. Default is 1, which means only luminance or red color
component if input is in RGB colorspace. If is set for example to 7 it will display all 3 (if) available
color components.

envelope, e
‘none’

No envelope, this is default.

‘instant’

Instant envelope, minimum and maximum values presented in graph will be easily visible even
with small step value.

‘peak’

Hold minimum and maximum values presented in graph across time. This way you can still spot
out of range values without constantly looking at waveforms.

‘peak+instant’

Peak and instant envelope combined together.

filter, f
‘lowpass’

No filtering, this is default.

‘flat’

Luma and chroma combined together.

‘aflat’

Similar as above, but shows difference between blue and red chroma.

‘chroma’

Displays only chroma.

‘color’

Displays actual color value on waveform.

‘acolor’

Similar as above, but with luma showing frequency of chroma values.

graticule, g

Set which graticule to display.

‘none’

Do not display graticule.

‘green’

Display green graticule showing legal broadcast ranges.

opacity, o

Set graticule opacity.

flags, fl

Set graticule flags.

‘numbers’

Draw numbers above lines. By default enabled.

‘dots’

Draw dots instead of lines.

scale, s

Set scale used for displaying graticule.

‘digital’
‘millivolts’

‘ire’

Default is digital.

bgopacity, b

Set background opacity.

38.188 weave, doubleweave# TOC

The weave takes a field-based video input and join each two sequential fields into single frame,
producing a new double height clip with half the frame rate and half the frame count.

The doubleweave works same as weave but without halving frame rate and frame count.

It accepts the following option:

first_field

Set first field. Available values are:

‘top, t’

Set the frame as top-field-first.

‘bottom, b’

Set the frame as bottom-field-first.

38.188.1 Examples# TOC

Interlace video using select and separatefields filter:

separatefields,select=eq(mod(n,4),0)+eq(mod(n,4),3),weave

38.189 xbr# TOC

Apply the xBR high-quality magnification filter which is designed for pixel art. It follows a set of
edge-detection rules, see http://www.libretro.com/forums/viewtopic.php?f=6&t=134.

It accepts the following option:

n

Set the scaling dimension: 2 for 2xBR, 3 for 3xBR and 4 for 4xBR. Default is 3.

http://www.libretro.com/forums/viewtopic.php?f=6&t=134

38.190 yadif# TOC

Deinterlace the input video ("yadif" means "yet another deinterlacing filter").

It accepts the following parameters:

mode

The interlacing mode to adopt. It accepts one of the following values:

0, send_frame

Output one frame for each frame.

1, send_field

Output one frame for each field.

2, send_frame_nospatial

Like send_frame, but it skips the spatial interlacing check.

3, send_field_nospatial

Like send_field, but it skips the spatial interlacing check.

The default value is send_frame.

parity

The picture field parity assumed for the input interlaced video. It accepts one of the following values:

0, tff

Assume the top field is first.

1, bff

Assume the bottom field is first.

-1, auto

Enable automatic detection of field parity.

The default value is auto. If the interlacing is unknown or the decoder does not export this
information, top field first will be assumed.

deint

Specify which frames to deinterlace. Accept one of the following values:

0, all

Deinterlace all frames.

1, interlaced

Only deinterlace frames marked as interlaced.

The default value is all.

38.191 zoompan# TOC

Apply Zoom & Pan effect.

This filter accepts the following options:

zoom, z

Set the zoom expression. Default is 1.

x
y

Set the x and y expression. Default is 0.

d

Set the duration expression in number of frames. This sets for how many number of frames effect
will last for single input image.

s

Set the output image size, default is ’hd720’.

fps

Set the output frame rate, default is ’25’.

Each expression can contain the following constants:

in_w, iw

Input width.

in_h, ih

Input height.

out_w, ow

Output width.

out_h, oh

Output height.

in

Input frame count.

on

Output frame count.

x
y

Last calculated ’x’ and ’y’ position from ’x’ and ’y’ expression for current input frame.

px
py

’x’ and ’y’ of last output frame of previous input frame or 0 when there was not yet such frame (first
input frame).

zoom

Last calculated zoom from ’z’ expression for current input frame.

pzoom

Last calculated zoom of last output frame of previous input frame.

duration

Number of output frames for current input frame. Calculated from ’d’ expression for each input
frame.

pduration

number of output frames created for previous input frame

a

Rational number: input width / input height

sar

sample aspect ratio

dar

display aspect ratio

38.191.1 Examples# TOC

Zoom-in up to 1.5 and pan at same time to some spot near center of picture:

zoompan=z=’min(zoom+0.0015,1.5)’:d=700:x=’if(gte(zoom,1.5),x,x+1/a)’:y=’if(gte(zoom,1.5),y,y+1)’:s=640x360

Zoom-in up to 1.5 and pan always at center of picture:

zoompan=z=’min(zoom+0.0015,1.5)’:d=700:x=’iw/2-(iw/zoom/2)’:y=’ih/2-(ih/zoom/2)’

Same as above but without pausing:

zoompan=z=’min(max(zoom,pzoom)+0.0015,1.5)’:d=1:x=’iw/2-(iw/zoom/2)’:y=’ih/2-(ih/zoom/2)’

38.192 zscale# TOC

Scale (resize) the input video, using the z.lib library: https://github.com/sekrit-twc/zimg.

The zscale filter forces the output display aspect ratio to be the same as the input, by changing the output
sample aspect ratio.

If the input image format is different from the format requested by the next filter, the zscale filter will
convert the input to the requested format.

38.192.1 Options# TOC

The filter accepts the following options.

width, w
height, h

Set the output video dimension expression. Default value is the input dimension.

If the width or w value is 0, the input width is used for the output. If the height or h value is 0, the
input height is used for the output.

If one and only one of the values is -n with n >= 1, the zscale filter will use a value that maintains the
aspect ratio of the input image, calculated from the other specified dimension. After that it will,
however, make sure that the calculated dimension is divisible by n and adjust the value if necessary.

If both values are -n with n >= 1, the behavior will be identical to both values being set to 0 as
previously detailed.

See below for the list of accepted constants for use in the dimension expression.

size, s

Set the video size. For the syntax of this option, check the (ffmpeg-utils)"Video size" section in the
ffmpeg-utils manual.

dither, d

Set the dither type.

Possible values are:

none
ordered
random
error_diffusion

Default is none.

filter, f

Set the resize filter type.

Possible values are:

point
bilinear
bicubic
spline16
spline36
lanczos

Default is bilinear.

range, r

Set the color range.

Possible values are:

input
limited
full

Default is same as input.

primaries, p

Set the color primaries.

Possible values are:

input
709
unspecified
170m
240m
2020

Default is same as input.

transfer, t

Set the transfer characteristics.

Possible values are:

input
709
unspecified
601
linear
2020_10
2020_12
smpte2084
iec61966-2-1
arib-std-b67

Default is same as input.

matrix, m

Set the colorspace matrix.

Possible value are:

input
709
unspecified
470bg
170m

2020_ncl
2020_cl

Default is same as input.

rangein, rin

Set the input color range.

Possible values are:

input
limited
full

Default is same as input.

primariesin, pin

Set the input color primaries.

Possible values are:

input
709
unspecified
170m
240m
2020

Default is same as input.

transferin, tin

Set the input transfer characteristics.

Possible values are:

input
709
unspecified
601
linear
2020_10
2020_12

Default is same as input.

matrixin, min

Set the input colorspace matrix.

Possible value are:

input
709
unspecified
470bg
170m
2020_ncl
2020_cl

chromal, c

Set the output chroma location.

Possible values are:

input
left
center
topleft
top
bottomleft
bottom

chromalin, cin

Set the input chroma location.

Possible values are:

input
left
center
topleft
top
bottomleft
bottom

npl

Set the nominal peak luminance.

The values of the w and h options are expressions containing the following constants:

in_w
in_h

The input width and height

iw
ih

These are the same as in_w and in_h.

out_w
out_h

The output (scaled) width and height

ow
oh

These are the same as out_w and out_h

a

The same as iw / ih

sar

input sample aspect ratio

dar

The input display aspect ratio. Calculated from (iw / ih) * sar.

hsub
vsub

horizontal and vertical input chroma subsample values. For example for the pixel format "yuv422p"
hsub is 2 and vsub is 1.

ohsub
ovsub

horizontal and vertical output chroma subsample values. For example for the pixel format "yuv422p"
hsub is 2 and vsub is 1.

39 Video Sources# TOC

Below is a description of the currently available video sources.

39.1 buffer# TOC

Buffer video frames, and make them available to the filter chain.

This source is mainly intended for a programmatic use, in particular through the interface defined in
libavfilter/vsrc_buffer.h.

It accepts the following parameters:

video_size

Specify the size (width and height) of the buffered video frames. For the syntax of this option, check
the (ffmpeg-utils)"Video size" section in the ffmpeg-utils manual.

width

The input video width.

height

The input video height.

pix_fmt

A string representing the pixel format of the buffered video frames. It may be a number
corresponding to a pixel format, or a pixel format name.

time_base

Specify the timebase assumed by the timestamps of the buffered frames.

frame_rate

Specify the frame rate expected for the video stream.

pixel_aspect, sar

The sample (pixel) aspect ratio of the input video.

sws_param

Specify the optional parameters to be used for the scale filter which is automatically inserted when an
input change is detected in the input size or format.

hw_frames_ctx

When using a hardware pixel format, this should be a reference to an AVHWFramesContext
describing input frames.

For example:

buffer=width=320:height=240:pix_fmt=yuv410p:time_base=1/24:sar=1

will instruct the source to accept video frames with size 320x240 and with format "yuv410p", assuming
1/24 as the timestamps timebase and square pixels (1:1 sample aspect ratio). Since the pixel format with
name "yuv410p" corresponds to the number 6 (check the enum AVPixelFormat definition in
libavutil/pixfmt.h), this example corresponds to:

buffer=size=320x240:pixfmt=6:time_base=1/24:pixel_aspect=1/1

Alternatively, the options can be specified as a flat string, but this syntax is deprecated:

width:height:pix_fmt:time_base.num:time_base.den:pixel_aspect.num:pixel_aspect.den[:sws_param]

39.2 cellauto# TOC

Create a pattern generated by an elementary cellular automaton.

The initial state of the cellular automaton can be defined through the filename and pattern options.
If such options are not specified an initial state is created randomly.

At each new frame a new row in the video is filled with the result of the cellular automaton next
generation. The behavior when the whole frame is filled is defined by the scroll option.

This source accepts the following options:

filename, f

Read the initial cellular automaton state, i.e. the starting row, from the specified file. In the file, each
non-whitespace character is considered an alive cell, a newline will terminate the row, and further
characters in the file will be ignored.

pattern, p

Read the initial cellular automaton state, i.e. the starting row, from the specified string.

Each non-whitespace character in the string is considered an alive cell, a newline will terminate the
row, and further characters in the string will be ignored.

rate, r

Set the video rate, that is the number of frames generated per second. Default is 25.

random_fill_ratio, ratio

Set the random fill ratio for the initial cellular automaton row. It is a floating point number value
ranging from 0 to 1, defaults to 1/PHI.

This option is ignored when a file or a pattern is specified.

random_seed, seed

Set the seed for filling randomly the initial row, must be an integer included between 0 and
UINT32_MAX. If not specified, or if explicitly set to -1, the filter will try to use a good random seed
on a best effort basis.

rule

Set the cellular automaton rule, it is a number ranging from 0 to 255. Default value is 110.

size, s

Set the size of the output video. For the syntax of this option, check the (ffmpeg-utils)"Video size"
section in the ffmpeg-utils manual.

If filename or pattern is specified, the size is set by default to the width of the specified initial
state row, and the height is set to width * PHI.

If size is set, it must contain the width of the specified pattern string, and the specified pattern will
be centered in the larger row.

If a filename or a pattern string is not specified, the size value defaults to "320x518" (used for a
randomly generated initial state).

scroll

If set to 1, scroll the output upward when all the rows in the output have been already filled. If set to
0, the new generated row will be written over the top row just after the bottom row is filled. Defaults
to 1.

start_full, full

If set to 1, completely fill the output with generated rows before outputting the first frame. This is the
default behavior, for disabling set the value to 0.

stitch

If set to 1, stitch the left and right row edges together. This is the default behavior, for disabling set
the value to 0.

39.2.1 Examples# TOC

Read the initial state from pattern, and specify an output of size 200x400.

cellauto=f=pattern:s=200x400

Generate a random initial row with a width of 200 cells, with a fill ratio of 2/3:

cellauto=ratio=2/3:s=200x200

Create a pattern generated by rule 18 starting by a single alive cell centered on an initial row with
width 100:

cellauto=p=@:s=100x400:full=0:rule=18

Specify a more elaborated initial pattern:

cellauto=p=’@@ @ @@’:s=100x400:full=0:rule=18

39.3 coreimagesrc# TOC

Video source generated on GPU using Apple’s CoreImage API on OSX.

This video source is a specialized version of the coreimage video filter. Use a core image generator at the
beginning of the applied filterchain to generate the content.

The coreimagesrc video source accepts the following options:

list_generators

List all available generators along with all their respective options as well as possible minimum and
maximum values along with the default values.

list_generators=true

size, s

Specify the size of the sourced video. For the syntax of this option, check the (ffmpeg-utils)"Video
size" section in the ffmpeg-utils manual. The default value is 320x240.

rate, r

Specify the frame rate of the sourced video, as the number of frames generated per second. It has to
be a string in the format frame_rate_num/frame_rate_den, an integer number, a floating point
number or a valid video frame rate abbreviation. The default value is "25".

sar

Set the sample aspect ratio of the sourced video.

duration, d

Set the duration of the sourced video. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax.

If not specified, or the expressed duration is negative, the video is supposed to be generated forever.

Additionally, all options of the coreimage video filter are accepted. A complete filterchain can be used for
further processing of the generated input without CPU-HOST transfer. See coreimage documentation and
examples for details.

39.3.1 Examples# TOC

Use CIQRCodeGenerator to create a QR code for the FFmpeg homepage, given as complete and
escaped command-line for Apple’s standard bash shell:

ffmpeg -f lavfi -i coreimagesrc=s=100x100:filter=CIQRCodeGenerator@inputMessage=https\\\\\://FFmpeg.org/@inputCorrectionLevel=H -frames:v 1 QRCode.png

This example is equivalent to the QRCode example of coreimage without the need for a nullsrc video
source.

39.4 mandelbrot# TOC

Generate a Mandelbrot set fractal, and progressively zoom towards the point specified with start_x and
start_y.

This source accepts the following options:

end_pts

Set the terminal pts value. Default value is 400.

end_scale

Set the terminal scale value. Must be a floating point value. Default value is 0.3.

inner

Set the inner coloring mode, that is the algorithm used to draw the Mandelbrot fractal internal region.

It shall assume one of the following values:

black

Set black mode.

convergence

Show time until convergence.

mincol

Set color based on point closest to the origin of the iterations.

period

Set period mode.

Default value is mincol.

bailout

Set the bailout value. Default value is 10.0.

maxiter

Set the maximum of iterations performed by the rendering algorithm. Default value is 7189.

outer

Set outer coloring mode. It shall assume one of following values:

iteration_count

Set iteration cound mode.

normalized_iteration_count

set normalized iteration count mode.

Default value is normalized_iteration_count.

rate, r

Set frame rate, expressed as number of frames per second. Default value is "25".

size, s

Set frame size. For the syntax of this option, check the "Video size" section in the ffmpeg-utils
manual. Default value is "640x480".

start_scale

Set the initial scale value. Default value is 3.0.

start_x

Set the initial x position. Must be a floating point value between -100 and 100. Default value is
-0.743643887037158704752191506114774.

start_y

Set the initial y position. Must be a floating point value between -100 and 100. Default value is
-0.131825904205311970493132056385139.

39.5 mptestsrc# TOC

Generate various test patterns, as generated by the MPlayer test filter.

The size of the generated video is fixed, and is 256x256. This source is useful in particular for testing
encoding features.

This source accepts the following options:

rate, r

Specify the frame rate of the sourced video, as the number of frames generated per second. It has to
be a string in the format frame_rate_num/frame_rate_den, an integer number, a floating point
number or a valid video frame rate abbreviation. The default value is "25".

duration, d

Set the duration of the sourced video. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax.

If not specified, or the expressed duration is negative, the video is supposed to be generated forever.

test, t

Set the number or the name of the test to perform. Supported tests are:

dc_luma
dc_chroma
freq_luma
freq_chroma
amp_luma
amp_chroma
cbp
mv
ring1
ring2
all

Default value is "all", which will cycle through the list of all tests.

Some examples:

mptestsrc=t=dc_luma

will generate a "dc_luma" test pattern.

39.6 frei0r_src# TOC

Provide a frei0r source.

To enable compilation of this filter you need to install the frei0r header and configure FFmpeg with
--enable-frei0r.

This source accepts the following parameters:

size

The size of the video to generate. For the syntax of this option, check the (ffmpeg-utils)"Video size"
section in the ffmpeg-utils manual.

framerate

The framerate of the generated video. It may be a string of the form num/den or a frame rate
abbreviation.

filter_name

The name to the frei0r source to load. For more information regarding frei0r and how to set the
parameters, read the frei0r section in the video filters documentation.

filter_params

A ’|’-separated list of parameters to pass to the frei0r source.

For example, to generate a frei0r partik0l source with size 200x200 and frame rate 10 which is overlaid on
the overlay filter main input:

frei0r_src=size=200x200:framerate=10:filter_name=partik0l:filter_params=1234 [overlay]; [in][overlay] overlay

39.7 life# TOC

Generate a life pattern.

This source is based on a generalization of John Conway’s life game.

The sourced input represents a life grid, each pixel represents a cell which can be in one of two possible
states, alive or dead. Every cell interacts with its eight neighbours, which are the cells that are horizontally,
vertically, or diagonally adjacent.

At each interaction the grid evolves according to the adopted rule, which specifies the number of neighbor
alive cells which will make a cell stay alive or born. The rule option allows one to specify the rule to
adopt.

This source accepts the following options:

filename, f

Set the file from which to read the initial grid state. In the file, each non-whitespace character is
considered an alive cell, and newline is used to delimit the end of each row.

If this option is not specified, the initial grid is generated randomly.

rate, r

Set the video rate, that is the number of frames generated per second. Default is 25.

random_fill_ratio, ratio

Set the random fill ratio for the initial random grid. It is a floating point number value ranging from 0
to 1, defaults to 1/PHI. It is ignored when a file is specified.

random_seed, seed

Set the seed for filling the initial random grid, must be an integer included between 0 and
UINT32_MAX. If not specified, or if explicitly set to -1, the filter will try to use a good random seed
on a best effort basis.

rule

Set the life rule.

A rule can be specified with a code of the kind "SNS/BNB", where NS and NB are sequences of
numbers in the range 0-8, NS specifies the number of alive neighbor cells which make a live cell stay
alive, and NB the number of alive neighbor cells which make a dead cell to become alive (i.e. to
"born"). "s" and "b" can be used in place of "S" and "B", respectively.

Alternatively a rule can be specified by an 18-bits integer. The 9 high order bits are used to encode
the next cell state if it is alive for each number of neighbor alive cells, the low order bits specify the
rule for "borning" new cells. Higher order bits encode for an higher number of neighbor cells. For
example the number 6153 = (12<<9)+9 specifies a stay alive rule of 12 and a born rule of 9, which
corresponds to "S23/B03".

Default value is "S23/B3", which is the original Conway’s game of life rule, and will keep a cell alive
if it has 2 or 3 neighbor alive cells, and will born a new cell if there are three alive cells around a dead
cell.

size, s

Set the size of the output video. For the syntax of this option, check the (ffmpeg-utils)"Video size"
section in the ffmpeg-utils manual.

If filename is specified, the size is set by default to the same size of the input file. If size is set, it
must contain the size specified in the input file, and the initial grid defined in that file is centered in the
larger resulting area.

If a filename is not specified, the size value defaults to "320x240" (used for a randomly generated
initial grid).

stitch

If set to 1, stitch the left and right grid edges together, and the top and bottom edges also. Defaults to
1.

mold

Set cell mold speed. If set, a dead cell will go from death_color to mold_color with a step of
mold. mold can have a value from 0 to 255.

life_color

Set the color of living (or new born) cells.

death_color

Set the color of dead cells. If mold is set, this is the first color used to represent a dead cell.

mold_color

Set mold color, for definitely dead and moldy cells.

For the syntax of these 3 color options, check the "Color" section in the ffmpeg-utils manual.

39.7.1 Examples# TOC

Read a grid from pattern, and center it on a grid of size 300x300 pixels:

life=f=pattern:s=300x300

Generate a random grid of size 200x200, with a fill ratio of 2/3:

life=ratio=2/3:s=200x200

Specify a custom rule for evolving a randomly generated grid:

life=rule=S14/B34

Full example with slow death effect (mold) using ffplay:

ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16

39.8 allrgb, allyuv, color, haldclutsrc, nullsrc, rgbtestsrc, smptebars,

smptehdbars, testsrc, testsrc2, yuvtestsrc# TOC

The allrgb source returns frames of size 4096x4096 of all rgb colors.

The allyuv source returns frames of size 4096x4096 of all yuv colors.

The color source provides an uniformly colored input.

The haldclutsrc source provides an identity Hald CLUT. See also haldclut filter.

The nullsrc source returns unprocessed video frames. It is mainly useful to be employed in analysis /
debugging tools, or as the source for filters which ignore the input data.

The rgbtestsrc source generates an RGB test pattern useful for detecting RGB vs BGR issues. You
should see a red, green and blue stripe from top to bottom.

The smptebars source generates a color bars pattern, based on the SMPTE Engineering Guideline EG
1-1990.

The smptehdbars source generates a color bars pattern, based on the SMPTE RP 219-2002.

The testsrc source generates a test video pattern, showing a color pattern, a scrolling gradient and a
timestamp. This is mainly intended for testing purposes.

The testsrc2 source is similar to testsrc, but supports more pixel formats instead of just rgb24. This
allows using it as an input for other tests without requiring a format conversion.

The yuvtestsrc source generates an YUV test pattern. You should see a y, cb and cr stripe from top to
bottom.

The sources accept the following parameters:

level

Specify the level of the Hald CLUT, only available in the haldclutsrc source. A level of N
generates a picture of N*N*N by N*N*N pixels to be used as identity matrix for 3D lookup tables.
Each component is coded on a 1/(N*N) scale.

color, c

Specify the color of the source, only available in the color source. For the syntax of this option,
check the "Color" section in the ffmpeg-utils manual.

size, s

Specify the size of the sourced video. For the syntax of this option, check the (ffmpeg-utils)"Video
size" section in the ffmpeg-utils manual. The default value is 320x240.

This option is not available with the allrgb, allyuv, and haldclutsrc filters.

rate, r

Specify the frame rate of the sourced video, as the number of frames generated per second. It has to
be a string in the format frame_rate_num/frame_rate_den, an integer number, a floating point
number or a valid video frame rate abbreviation. The default value is "25".

duration, d

Set the duration of the sourced video. See (ffmpeg-utils)the Time duration section in the
ffmpeg-utils(1) manual for the accepted syntax.

If not specified, or the expressed duration is negative, the video is supposed to be generated forever.

sar

Set the sample aspect ratio of the sourced video.

alpha

Specify the alpha (opacity) of the background, only available in the testsrc2 source. The value
must be between 0 (fully transparent) and 255 (fully opaque, the default).

decimals, n

Set the number of decimals to show in the timestamp, only available in the testsrc source.

The displayed timestamp value will correspond to the original timestamp value multiplied by the
power of 10 of the specified value. Default value is 0.

39.8.1 Examples# TOC

Generate a video with a duration of 5.3 seconds, with size 176x144 and a frame rate of 10 frames per
second:

testsrc=duration=5.3:size=qcif:rate=10

The following graph description will generate a red source with an opacity of 0.2, with size "qcif"
and a frame rate of 10 frames per second:

color=c=red@0.2:s=qcif:r=10

If the input content is to be ignored, nullsrc can be used. The following command generates noise
in the luminance plane by employing the geq filter:

nullsrc=s=256x256, geq=random(1)*255:128:128

39.8.2 Commands# TOC

The color source supports the following commands:

c, color

Set the color of the created image. Accepts the same syntax of the corresponding color option.

40 Video Sinks# TOC

Below is a description of the currently available video sinks.

40.1 buffersink# TOC

Buffer video frames, and make them available to the end of the filter graph.

This sink is mainly intended for programmatic use, in particular through the interface defined in
libavfilter/buffersink.h or the options system.

It accepts a pointer to an AVBufferSinkContext structure, which defines the incoming buffers’ formats, to
be passed as the opaque parameter to avfilter_init_filter for initialization.

40.2 nullsink# TOC

Null video sink: do absolutely nothing with the input video. It is mainly useful as a template and for use in
analysis / debugging tools.

41 Multimedia Filters# TOC

Below is a description of the currently available multimedia filters.

41.1 abitscope# TOC

Convert input audio to a video output, displaying the audio bit scope.

The filter accepts the following options:

rate, r

Set frame rate, expressed as number of frames per second. Default value is "25".

size, s

Specify the video size for the output. For the syntax of this option, check the (ffmpeg-utils)"Video
size" section in the ffmpeg-utils manual. Default value is 1024x256.

colors

Specify list of colors separated by space or by ’|’ which will be used to draw channels. Unrecognized
or missing colors will be replaced by white color.

41.2 ahistogram# TOC

Convert input audio to a video output, displaying the volume histogram.

The filter accepts the following options:

dmode

Specify how histogram is calculated.

It accepts the following values:

‘single’

Use single histogram for all channels.

‘separate’

Use separate histogram for each channel.

Default is single.

rate, r

Set frame rate, expressed as number of frames per second. Default value is "25".

size, s

Specify the video size for the output. For the syntax of this option, check the (ffmpeg-utils)"Video
size" section in the ffmpeg-utils manual. Default value is hd720.

scale

Set display scale.

It accepts the following values:

‘log’

logarithmic

‘sqrt’

square root

‘cbrt’

cubic root

‘lin’

linear

‘rlog’

reverse logarithmic

Default is log.

ascale

Set amplitude scale.

It accepts the following values:

‘log’

logarithmic

‘lin’

linear

Default is log.

acount

Set how much frames to accumulate in histogram. Defauls is 1. Setting this to -1 accumulates all
frames.

rheight

Set histogram ratio of window height.

slide

Set sonogram sliding.

It accepts the following values:

‘replace’

replace old rows with new ones.

‘scroll’

scroll from top to bottom.

Default is replace.

41.3 aphasemeter# TOC

Convert input audio to a video output, displaying the audio phase.

The filter accepts the following options:

rate, r

Set the output frame rate. Default value is 25.

size, s

Set the video size for the output. For the syntax of this option, check the (ffmpeg-utils)"Video size"
section in the ffmpeg-utils manual. Default value is 800x400.

rc
gc
bc

Specify the red, green, blue contrast. Default values are 2, 7 and 1. Allowed range is [0, 255].

mpc

Set color which will be used for drawing median phase. If color is none which is default, no median
phase value will be drawn.

video

Enable video output. Default is enabled.

The filter also exports the frame metadata lavfi.aphasemeter.phase which represents mean phase
of current audio frame. Value is in range [-1, 1]. The -1 means left and right channels are completely
out of phase and 1 means channels are in phase.

41.4 avectorscope# TOC

Convert input audio to a video output, representing the audio vector scope.

The filter is used to measure the difference between channels of stereo audio stream. A monoaural signal,
consisting of identical left and right signal, results in straight vertical line. Any stereo separation is visible
as a deviation from this line, creating a Lissajous figure. If the straight (or deviation from it) but horizontal
line appears this indicates that the left and right channels are out of phase.

The filter accepts the following options:

mode, m

Set the vectorscope mode.

Available values are:

‘lissajous’

Lissajous rotated by 45 degrees.

‘lissajous_xy’

Same as above but not rotated.

‘polar’

Shape resembling half of circle.

Default value is ‘lissajous’.

size, s

Set the video size for the output. For the syntax of this option, check the (ffmpeg-utils)"Video size"
section in the ffmpeg-utils manual. Default value is 400x400.

rate, r

Set the output frame rate. Default value is 25.

rc
gc
bc
ac

Specify the red, green, blue and alpha contrast. Default values are 40, 160, 80 and 255. Allowed
range is [0, 255].

rf
gf
bf
af

Specify the red, green, blue and alpha fade. Default values are 15, 10, 5 and 5. Allowed range is
[0, 255].

zoom

Set the zoom factor. Default value is 1. Allowed range is [0, 10]. Values lower than 1 will auto
adjust zoom factor to maximal possible value.

draw

Set the vectorscope drawing mode.

Available values are:

‘dot’

Draw dot for each sample.

‘line’

Draw line between previous and current sample.

Default value is ‘dot’.

scale

Specify amplitude scale of audio samples.

Available values are:

‘lin’

Linear.

‘sqrt’

Square root.

‘cbrt’

Cubic root.

‘log’

Logarithmic.

swap

Swap left channel axis with right channel axis.

mirror

Mirror axis.

‘none’

No mirror.

‘x’

Mirror only x axis.

‘y’

Mirror only y axis.

‘xy’

Mirror both axis.

41.4.1 Examples# TOC

Complete example using ffplay:

ffplay -f lavfi ’amovie=input.mp3, asplit [a][out1];
 [a] avectorscope=zoom=1.3:rc=2:gc=200:bc=10:rf=1:gf=8:bf=7 [out0]’

41.5 bench, abench# TOC

Benchmark part of a filtergraph.

The filter accepts the following options:

action

Start or stop a timer.

Available values are:

‘start’

Get the current time, set it as frame metadata (using the key lavfi.bench.start_time),
and forward the frame to the next filter.

‘stop’

Get the current time and fetch the lavfi.bench.start_time metadata from the input
frame metadata to get the time difference. Time difference, average, maximum and minimum
time (respectively t, avg, max and min) are then printed. The timestamps are expressed in
seconds.

41.5.1 Examples# TOC

Benchmark selectivecolor filter:

bench=start,selectivecolor=reds=-.2 .12 -.49,bench=stop

41.6 concat# TOC

Concatenate audio and video streams, joining them together one after the other.

The filter works on segments of synchronized video and audio streams. All segments must have the same
number of streams of each type, and that will also be the number of streams at output.

The filter accepts the following options:

n

Set the number of segments. Default is 2.

v

Set the number of output video streams, that is also the number of video streams in each segment.
Default is 1.

a

Set the number of output audio streams, that is also the number of audio streams in each segment.
Default is 0.

unsafe

Activate unsafe mode: do not fail if segments have a different format.

The filter has v+a outputs: first v video outputs, then a audio outputs.

There are nx(v+a) inputs: first the inputs for the first segment, in the same order as the outputs, then the
inputs for the second segment, etc.

Related streams do not always have exactly the same duration, for various reasons including codec frame
size or sloppy authoring. For that reason, related synchronized streams (e.g. a video and its audio track)
should be concatenated at once. The concat filter will use the duration of the longest stream in each
segment (except the last one), and if necessary pad shorter audio streams with silence.

For this filter to work correctly, all segments must start at timestamp 0.

All corresponding streams must have the same parameters in all segments; the filtering system will
automatically select a common pixel format for video streams, and a common sample format, sample rate
and channel layout for audio streams, but other settings, such as resolution, must be converted explicitly
by the user.

Different frame rates are acceptable but will result in variable frame rate at output; be sure to configure the
output file to handle it.

41.6.1 Examples# TOC

Concatenate an opening, an episode and an ending, all in bilingual version (video in stream 0, audio
in streams 1 and 2):

ffmpeg -i opening.mkv -i episode.mkv -i ending.mkv -filter_complex \
 ’[0:0] [0:1] [0:2] [1:0] [1:1] [1:2] [2:0] [2:1] [2:2]
 concat=n=3:v=1:a=2 [v] [a1] [a2]’ \
 -map ’[v]’ -map ’[a1]’ -map ’[a2]’ output.mkv

Concatenate two parts, handling audio and video separately, using the (a)movie sources, and
adjusting the resolution:

movie=part1.mp4, scale=512:288 [v1] ; amovie=part1.mp4 [a1] ;
movie=part2.mp4, scale=512:288 [v2] ; amovie=part2.mp4 [a2] ;
[v1] [v2] concat [outv] ; [a1] [a2] concat=v=0:a=1 [outa]

Note that a desync will happen at the stitch if the audio and video streams do not have exactly the
same duration in the first file.

41.7 drawgraph, adrawgraph# TOC

Draw a graph using input video or audio metadata.

It accepts the following parameters:

m1

Set 1st frame metadata key from which metadata values will be used to draw a graph.

fg1

Set 1st foreground color expression.

m2

Set 2nd frame metadata key from which metadata values will be used to draw a graph.

fg2

Set 2nd foreground color expression.

m3

Set 3rd frame metadata key from which metadata values will be used to draw a graph.

fg3

Set 3rd foreground color expression.

m4

Set 4th frame metadata key from which metadata values will be used to draw a graph.

fg4

Set 4th foreground color expression.

min

Set minimal value of metadata value.

max

Set maximal value of metadata value.

bg

Set graph background color. Default is white.

mode

Set graph mode.

Available values for mode is:

‘bar’
‘dot’
‘line’

Default is line.

slide

Set slide mode.

Available values for slide is:

‘frame’

Draw new frame when right border is reached.

‘replace’

Replace old columns with new ones.

‘scroll’

Scroll from right to left.

‘rscroll’

Scroll from left to right.

‘picture’

Draw single picture.

Default is frame.

size

Set size of graph video. For the syntax of this option, check the (ffmpeg-utils)"Video size" section in
the ffmpeg-utils manual. The default value is 900x256.

The foreground color expressions can use the following variables:

MIN

Minimal value of metadata value.

MAX

Maximal value of metadata value.

VAL

Current metadata key value.

The color is defined as 0xAABBGGRR.

Example using metadata from signalstats filter:

signalstats,drawgraph=lavfi.signalstats.YAVG:min=0:max=255

Example using metadata from ebur128 filter:

ebur128=metadata=1,adrawgraph=lavfi.r128.M:min=-120:max=5

41.8 ebur128# TOC

EBU R128 scanner filter. This filter takes an audio stream as input and outputs it unchanged. By default, it
logs a message at a frequency of 10Hz with the Momentary loudness (identified by M), Short-term
loudness (S), Integrated loudness (I) and Loudness Range (LRA).

The filter also has a video output (see the video option) with a real time graph to observe the loudness
evolution. The graphic contains the logged message mentioned above, so it is not printed anymore when
this option is set, unless the verbose logging is set. The main graphing area contains the short-term
loudness (3 seconds of analysis), and the gauge on the right is for the momentary loudness (400
milliseconds).

More information about the Loudness Recommendation EBU R128 on http://tech.ebu.ch/loudness.

The filter accepts the following options:

video

Activate the video output. The audio stream is passed unchanged whether this option is set or no. The
video stream will be the first output stream if activated. Default is 0.

size

Set the video size. This option is for video only. For the syntax of this option, check the
(ffmpeg-utils)"Video size" section in the ffmpeg-utils manual. Default and minimum resolution is
640x480.

meter

Set the EBU scale meter. Default is 9. Common values are 9 and 18, respectively for EBU scale
meter +9 and EBU scale meter +18. Any other integer value between this range is allowed.

metadata

Set metadata injection. If set to 1, the audio input will be segmented into 100ms output frames, each
of them containing various loudness information in metadata. All the metadata keys are prefixed with
lavfi.r128..

Default is 0.

framelog

Force the frame logging level.

http://tech.ebu.ch/loudness

Available values are:

‘info’

information logging level

‘verbose’

verbose logging level

By default, the logging level is set to info. If the video or the metadata options are set, it switches
to verbose.

peak

Set peak mode(s).

Available modes can be cumulated (the option is a flag type). Possible values are:

‘none’

Disable any peak mode (default).

‘sample’

Enable sample-peak mode.

Simple peak mode looking for the higher sample value. It logs a message for sample-peak
(identified by SPK).

‘true’

Enable true-peak mode.

If enabled, the peak lookup is done on an over-sampled version of the input stream for better
peak accuracy. It logs a message for true-peak. (identified by TPK) and true-peak per frame
(identified by FTPK). This mode requires a build with libswresample.

dualmono

Treat mono input files as "dual mono". If a mono file is intended for playback on a stereo system, its
EBU R128 measurement will be perceptually incorrect. If set to true, this option will compensate
for this effect. Multi-channel input files are not affected by this option.

panlaw

Set a specific pan law to be used for the measurement of dual mono files. This parameter is optional,
and has a default value of -3.01dB.

41.8.1 Examples# TOC

Real-time graph using ffplay, with a EBU scale meter +18:

ffplay -f lavfi -i "amovie=input.mp3,ebur128=video=1:meter=18 [out0][out1]"

Run an analysis with ffmpeg:

ffmpeg -nostats -i input.mp3 -filter_complex ebur128 -f null -

41.9 interleave, ainterleave# TOC

Temporally interleave frames from several inputs.

interleave works with video inputs, ainterleave with audio.

These filters read frames from several inputs and send the oldest queued frame to the output.

Input streams must have well defined, monotonically increasing frame timestamp values.

In order to submit one frame to output, these filters need to enqueue at least one frame for each input, so
they cannot work in case one input is not yet terminated and will not receive incoming frames.

For example consider the case when one input is a select filter which always drops input frames. The
interleave filter will keep reading from that input, but it will never be able to send new frames to
output until the input sends an end-of-stream signal.

Also, depending on inputs synchronization, the filters will drop frames in case one input receives more
frames than the other ones, and the queue is already filled.

These filters accept the following options:

nb_inputs, n

Set the number of different inputs, it is 2 by default.

41.9.1 Examples# TOC

Interleave frames belonging to different streams using ffmpeg:

ffmpeg -i bambi.avi -i pr0n.mkv -filter_complex "[0:v][1:v] interleave" out.avi

Add flickering blur effect:

select=’if(gt(random(0), 0.2), 1, 2)’:n=2 [tmp], boxblur=2:2, [tmp] interleave

41.10 metadata, ametadata# TOC

Manipulate frame metadata.

This filter accepts the following options:

mode

Set mode of operation of the filter.

Can be one of the following:

‘select’

If both value and key is set, select frames which have such metadata. If only key is set, select
every frame that has such key in metadata.

‘add’

Add new metadata key and value. If key is already available do nothing.

‘modify’

Modify value of already present key.

‘delete’

If value is set, delete only keys that have such value. Otherwise, delete key. If key is not set,
delete all metadata values in the frame.

‘print’

Print key and its value if metadata was found. If key is not set print all metadata values
available in frame.

key

Set key used with all modes. Must be set for all modes except print and delete.

value

Set metadata value which will be used. This option is mandatory for modify and add mode.

function

Which function to use when comparing metadata value and value.

Can be one of following:

‘same_str’

Values are interpreted as strings, returns true if metadata value is same as value.

‘starts_with’

Values are interpreted as strings, returns true if metadata value starts with the value option
string.

‘less’

Values are interpreted as floats, returns true if metadata value is less than value.

‘equal’

Values are interpreted as floats, returns true if value is equal with metadata value.

‘greater’

Values are interpreted as floats, returns true if metadata value is greater than value.

‘expr’

Values are interpreted as floats, returns true if expression from option expr evaluates to true.

expr

Set expression which is used when function is set to expr. The expression is evaluated through
the eval API and can contain the following constants:

VALUE1

Float representation of value from metadata key.

VALUE2

Float representation of value as supplied by user in value option.

file

If specified in print mode, output is written to the named file. Instead of plain filename any
writable url can be specified. Filename “-” is a shorthand for standard output. If file option is not
set, output is written to the log with AV_LOG_INFO loglevel.

41.10.1 Examples# TOC

Print all metadata values for frames with key lavfi.signalstats.YDIF with values between 0
and 1.

signalstats,metadata=print:key=lavfi.signalstats.YDIF:value=0:function=expr:expr=’between(VALUE1,0,1)’

Print silencedetect output to file metadata.txt.

silencedetect,ametadata=mode=print:file=metadata.txt

Direct all metadata to a pipe with file descriptor 4.

metadata=mode=print:file=’pipe\:4’

41.11 perms, aperms# TOC

Set read/write permissions for the output frames.

These filters are mainly aimed at developers to test direct path in the following filter in the filtergraph.

The filters accept the following options:

mode

Select the permissions mode.

It accepts the following values:

‘none’

Do nothing. This is the default.

‘ro’

Set all the output frames read-only.

‘rw’

Set all the output frames directly writable.

‘toggle’

Make the frame read-only if writable, and writable if read-only.

‘random’

Set each output frame read-only or writable randomly.

seed

Set the seed for the random mode, must be an integer included between 0 and UINT32_MAX. If not
specified, or if explicitly set to -1, the filter will try to use a good random seed on a best effort basis.

Note: in case of auto-inserted filter between the permission filter and the following one, the permission
might not be received as expected in that following filter. Inserting a format or aformat filter before the
perms/aperms filter can avoid this problem.

41.12 realtime, arealtime# TOC

Slow down filtering to match real time approximately.

These filters will pause the filtering for a variable amount of time to match the output rate with the input
timestamps. They are similar to the re option to ffmpeg.

They accept the following options:

limit

Time limit for the pauses. Any pause longer than that will be considered a timestamp discontinuity
and reset the timer. Default is 2 seconds.

41.13 select, aselect# TOC

Select frames to pass in output.

This filter accepts the following options:

expr, e

Set expression, which is evaluated for each input frame.

If the expression is evaluated to zero, the frame is discarded.

If the evaluation result is negative or NaN, the frame is sent to the first output; otherwise it is sent to
the output with index ceil(val)-1, assuming that the input index starts from 0.

For example a value of 1.2 corresponds to the output with index ceil(1.2)-1 = 2-1 = 1,
that is the second output.

outputs, n

Set the number of outputs. The output to which to send the selected frame is based on the result of the
evaluation. Default value is 1.

The expression can contain the following constants:

n

The (sequential) number of the filtered frame, starting from 0.

selected_n

The (sequential) number of the selected frame, starting from 0.

prev_selected_n

The sequential number of the last selected frame. It’s NAN if undefined.

TB

The timebase of the input timestamps.

pts

The PTS (Presentation TimeStamp) of the filtered video frame, expressed in TB units. It’s NAN if
undefined.

t

The PTS of the filtered video frame, expressed in seconds. It’s NAN if undefined.

prev_pts

The PTS of the previously filtered video frame. It’s NAN if undefined.

prev_selected_pts

The PTS of the last previously filtered video frame. It’s NAN if undefined.

prev_selected_t

The PTS of the last previously selected video frame, expressed in seconds. It’s NAN if undefined.

start_pts

The PTS of the first video frame in the video. It’s NAN if undefined.

start_t

The time of the first video frame in the video. It’s NAN if undefined.

pict_type (video only)

The type of the filtered frame. It can assume one of the following values:

I
P
B

S
SI
SP
BI

interlace_type (video only)

The frame interlace type. It can assume one of the following values:

PROGRESSIVE

The frame is progressive (not interlaced).

TOPFIRST

The frame is top-field-first.

BOTTOMFIRST

The frame is bottom-field-first.

consumed_sample_n (audio only)

the number of selected samples before the current frame

samples_n (audio only)

the number of samples in the current frame

sample_rate (audio only)

the input sample rate

key

This is 1 if the filtered frame is a key-frame, 0 otherwise.

pos

the position in the file of the filtered frame, -1 if the information is not available (e.g. for synthetic
video)

scene (video only)

value between 0 and 1 to indicate a new scene; a low value reflects a low probability for the current
frame to introduce a new scene, while a higher value means the current frame is more likely to be one
(see the example below)

concatdec_select

The concat demuxer can select only part of a concat input file by setting an inpoint and an outpoint,
but the output packets may not be entirely contained in the selected interval. By using this variable, it is
possible to skip frames generated by the concat demuxer which are not exactly contained in the selected
interval.

This works by comparing the frame pts against the lavf.concat.start_time and the lavf.concat.duration

packet metadata values which are also present in the decoded frames.

The concatdec_select variable is -1 if the frame pts is at least start_time and either the duration
metadata is missing or the frame pts is less than start_time + duration, 0 otherwise, and NaN if the
start_time metadata is missing.

That basically means that an input frame is selected if its pts is within the interval set by the concat
demuxer.

The default value of the select expression is "1".

41.13.1 Examples# TOC

Select all frames in input:

select

The example above is the same as:

select=1

Skip all frames:

select=0

Select only I-frames:

select=’eq(pict_type\,I)’

Select one frame every 100:

select=’not(mod(n\,100))’

Select only frames contained in the 10-20 time interval:

select=between(t\,10\,20)

Select only I-frames contained in the 10-20 time interval:

select=between(t\,10\,20)*eq(pict_type\,I)

Select frames with a minimum distance of 10 seconds:

select=’isnan(prev_selected_t)+gte(t-prev_selected_t\,10)’

Use aselect to select only audio frames with samples number > 100:

aselect=’gt(samples_n\,100)’

Create a mosaic of the first scenes:

ffmpeg -i video.avi -vf select=’gt(scene\,0.4)’,scale=160:120,tile -frames:v 1 preview.png

Comparing scene against a value between 0.3 and 0.5 is generally a sane choice.

Send even and odd frames to separate outputs, and compose them:

select=n=2:e=’mod(n, 2)+1’ [odd][even]; [odd] pad=h=2*ih [tmp]; [tmp][even] overlay=y=h

Select useful frames from an ffconcat file which is using inpoints and outpoints but where the source
files are not intra frame only.

ffmpeg -copyts -vsync 0 -segment_time_metadata 1 -i input.ffconcat -vf select=concatdec_select -af aselect=concatdec_select output.avi

41.14 sendcmd, asendcmd# TOC

Send commands to filters in the filtergraph.

These filters read commands to be sent to other filters in the filtergraph.

sendcmd must be inserted between two video filters, asendcmd must be inserted between two audio
filters, but apart from that they act the same way.

The specification of commands can be provided in the filter arguments with the commands option, or in a
file specified by the filename option.

These filters accept the following options:

commands, c

Set the commands to be read and sent to the other filters.

filename, f

Set the filename of the commands to be read and sent to the other filters.

41.14.1 Commands syntax# TOC

A commands description consists of a sequence of interval specifications, comprising a list of commands
to be executed when a particular event related to that interval occurs. The occurring event is typically the
current frame time entering or leaving a given time interval.

An interval is specified by the following syntax:

START[-END] COMMANDS;

The time interval is specified by the START and END times. END is optional and defaults to the maximum
time.

The current frame time is considered within the specified interval if it is included in the interval [START,
END), that is when the time is greater or equal to START and is lesser than END.

COMMANDS consists of a sequence of one or more command specifications, separated by ",", relating to
that interval. The syntax of a command specification is given by:

[FLAGS] TARGET COMMAND ARG

FLAGS is optional and specifies the type of events relating to the time interval which enable sending the
specified command, and must be a non-null sequence of identifier flags separated by "+" or "|" and
enclosed between "[" and "]".

The following flags are recognized:

enter

The command is sent when the current frame timestamp enters the specified interval. In other words,
the command is sent when the previous frame timestamp was not in the given interval, and the
current is.

leave

The command is sent when the current frame timestamp leaves the specified interval. In other words,
the command is sent when the previous frame timestamp was in the given interval, and the current is
not.

If FLAGS is not specified, a default value of [enter] is assumed.

TARGET specifies the target of the command, usually the name of the filter class or a specific filter
instance name.

COMMAND specifies the name of the command for the target filter.

ARG is optional and specifies the optional list of argument for the given COMMAND.

Between one interval specification and another, whitespaces, or sequences of characters starting with #
until the end of line, are ignored and can be used to annotate comments.

A simplified BNF description of the commands specification syntax follows:

COMMAND_FLAG ::= "enter" | "leave"
COMMAND_FLAGS ::= COMMAND_FLAG [(+|"|")COMMAND_FLAG]
COMMAND ::= ["[" COMMAND_FLAGS "]"] TARGET COMMAND [ARG]
COMMANDS ::= COMMAND [,COMMANDS]
INTERVAL ::= START[-END] COMMANDS
INTERVALS ::= INTERVAL[;INTERVALS]

41.14.2 Examples# TOC

Specify audio tempo change at second 4:

asendcmd=c=’4.0 atempo tempo 1.5’,atempo

Target a specific filter instance:

asendcmd=c=’4.0 atempo@my tempo 1.5’,atempo@my

Specify a list of drawtext and hue commands in a file.

show text in the interval 5-10
5.0-10.0 [enter] drawtext reinit ’fontfile=FreeSerif.ttf:text=hello world’,
 [leave] drawtext reinit ’fontfile=FreeSerif.ttf:text=’;

desaturate the image in the interval 15-20
15.0-20.0 [enter] hue s 0,
 [enter] drawtext reinit ’fontfile=FreeSerif.ttf:text=nocolor’,
 [leave] hue s 1,
 [leave] drawtext reinit ’fontfile=FreeSerif.ttf:text=color’;

apply an exponential saturation fade-out effect, starting from time 25
25 [enter] hue s exp(25-t)

A filtergraph allowing to read and process the above command list stored in a file test.cmd, can be
specified with:

sendcmd=f=test.cmd,drawtext=fontfile=FreeSerif.ttf:text=’’,hue

41.15 setpts, asetpts# TOC

Change the PTS (presentation timestamp) of the input frames.

setpts works on video frames, asetpts on audio frames.

This filter accepts the following options:

expr

The expression which is evaluated for each frame to construct its timestamp.

The expression is evaluated through the eval API and can contain the following constants:

FRAME_RATE

frame rate, only defined for constant frame-rate video

PTS

The presentation timestamp in input

N

The count of the input frame for video or the number of consumed samples, not including the current
frame for audio, starting from 0.

NB_CONSUMED_SAMPLES

The number of consumed samples, not including the current frame (only audio)

NB_SAMPLES, S

The number of samples in the current frame (only audio)

SAMPLE_RATE, SR

The audio sample rate.

STARTPTS

The PTS of the first frame.

STARTT

the time in seconds of the first frame

INTERLACED

State whether the current frame is interlaced.

T

the time in seconds of the current frame

POS

original position in the file of the frame, or undefined if undefined for the current frame

PREV_INPTS

The previous input PTS.

PREV_INT

previous input time in seconds

PREV_OUTPTS

The previous output PTS.

PREV_OUTT

previous output time in seconds

RTCTIME

The wallclock (RTC) time in microseconds. This is deprecated, use time(0) instead.

RTCSTART

The wallclock (RTC) time at the start of the movie in microseconds.

TB

The timebase of the input timestamps.

41.15.1 Examples# TOC

Start counting PTS from zero

setpts=PTS-STARTPTS

Apply fast motion effect:

setpts=0.5*PTS

Apply slow motion effect:

setpts=2.0*PTS

Set fixed rate of 25 frames per second:

setpts=N/(25*TB)

Set fixed rate 25 fps with some jitter:

setpts=’1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))’

Apply an offset of 10 seconds to the input PTS:

setpts=PTS+10/TB

Generate timestamps from a "live source" and rebase onto the current timebase:

setpts=’(RTCTIME - RTCSTART) / (TB * 1000000)’

Generate timestamps by counting samples:

asetpts=N/SR/TB

41.16 setrange# TOC

Force color range for the output video frame.

The setrange filter marks the color range property for the output frames. It does not change the input
frame, but only sets the corresponding property, which affects how the frame is treated by following
filters.

The filter accepts the following options:

range

Available values are:

‘auto’

Keep the same color range property.

‘unspecified, unknown’

Set the color range as unspecified.

‘limited, tv, mpeg’

Set the color range as limited.

‘full, pc, jpeg’

Set the color range as full.

41.17 settb, asettb# TOC

Set the timebase to use for the output frames timestamps. It is mainly useful for testing timebase
configuration.

It accepts the following parameters:

expr, tb

The expression which is evaluated into the output timebase.

The value for tb is an arithmetic expression representing a rational. The expression can contain the
constants "AVTB" (the default timebase), "intb" (the input timebase) and "sr" (the sample rate, audio
only). Default value is "intb".

41.17.1 Examples# TOC

Set the timebase to 1/25:

settb=expr=1/25

Set the timebase to 1/10:

settb=expr=0.1

Set the timebase to 1001/1000:

settb=1+0.001

Set the timebase to 2*intb:

settb=2*intb

Set the default timebase value:

settb=AVTB

41.18 showcqt# TOC

Convert input audio to a video output representing frequency spectrum logarithmically using
Brown-Puckette constant Q transform algorithm with direct frequency domain coefficient calculation (but
the transform itself is not really constant Q, instead the Q factor is actually variable/clamped), with
musical tone scale, from E0 to D#10.

The filter accepts the following options:

size, s

Specify the video size for the output. It must be even. For the syntax of this option, check the
(ffmpeg-utils)"Video size" section in the ffmpeg-utils manual. Default value is 1920x1080.

fps, rate, r

Set the output frame rate. Default value is 25.

bar_h

Set the bargraph height. It must be even. Default value is -1 which computes the bargraph height
automatically.

axis_h

Set the axis height. It must be even. Default value is -1 which computes the axis height
automatically.

sono_h

Set the sonogram height. It must be even. Default value is -1 which computes the sonogram height
automatically.

fullhd

Set the fullhd resolution. This option is deprecated, use size, s instead. Default value is 1.

sono_v, volume

Specify the sonogram volume expression. It can contain variables:

bar_v

the bar_v evaluated expression

frequency, freq, f

the frequency where it is evaluated

timeclamp, tc

the value of timeclamp option

and functions:

a_weighting(f)

A-weighting of equal loudness

b_weighting(f)

B-weighting of equal loudness

c_weighting(f)

C-weighting of equal loudness.

Default value is 16.

bar_v, volume2

Specify the bargraph volume expression. It can contain variables:

sono_v

the sono_v evaluated expression

frequency, freq, f

the frequency where it is evaluated

timeclamp, tc

the value of timeclamp option

and functions:

a_weighting(f)

A-weighting of equal loudness

b_weighting(f)

B-weighting of equal loudness

c_weighting(f)

C-weighting of equal loudness.

Default value is sono_v.

sono_g, gamma

Specify the sonogram gamma. Lower gamma makes the spectrum more contrast, higher gamma
makes the spectrum having more range. Default value is 3. Acceptable range is [1, 7].

bar_g, gamma2

Specify the bargraph gamma. Default value is 1. Acceptable range is [1, 7].

bar_t

Specify the bargraph transparency level. Lower value makes the bargraph sharper. Default value is 1.
Acceptable range is [0, 1].

timeclamp, tc

Specify the transform timeclamp. At low frequency, there is trade-off between accuracy in time
domain and frequency domain. If timeclamp is lower, event in time domain is represented more
accurately (such as fast bass drum), otherwise event in frequency domain is represented more
accurately (such as bass guitar). Acceptable range is [0.002, 1]. Default value is 0.17.

attack

Set attack time in seconds. The default is 0 (disabled). Otherwise, it limits future samples by applying
asymmetric windowing in time domain, useful when low latency is required. Accepted range is [0,
1].

basefreq

Specify the transform base frequency. Default value is 20.01523126408007475, which is
frequency 50 cents below E0. Acceptable range is [10, 100000].

endfreq

Specify the transform end frequency. Default value is 20495.59681441799654, which is
frequency 50 cents above D#10. Acceptable range is [10, 100000].

coeffclamp

This option is deprecated and ignored.

tlength

Specify the transform length in time domain. Use this option to control accuracy trade-off between
time domain and frequency domain at every frequency sample. It can contain variables:

frequency, freq, f

the frequency where it is evaluated

timeclamp, tc

the value of timeclamp option.

Default value is 384*tc/(384+tc*f).

count

Specify the transform count for every video frame. Default value is 6. Acceptable range is [1,
30].

fcount

Specify the transform count for every single pixel. Default value is 0, which makes it computed
automatically. Acceptable range is [0, 10].

fontfile

Specify font file for use with freetype to draw the axis. If not specified, use embedded font. Note that
drawing with font file or embedded font is not implemented with custom basefreq and endfreq, use
axisfile option instead.

font

Specify fontconfig pattern. This has lower priority than fontfile. The : in the pattern may be replaced
by | to avoid unnecessary escaping.

fontcolor

Specify font color expression. This is arithmetic expression that should return integer value
0xRRGGBB. It can contain variables:

frequency, freq, f

the frequency where it is evaluated

timeclamp, tc

the value of timeclamp option

and functions:

midi(f)

midi number of frequency f, some midi numbers: E0(16), C1(24), C2(36), A4(69)

r(x), g(x), b(x)

red, green, and blue value of intensity x.

Default value is st(0, (midi(f)-59.5)/12); st(1, if(between(ld(0),0,1),
0.5-0.5*cos(2*PI*ld(0)), 0)); r(1-ld(1)) + b(ld(1)).

axisfile

Specify image file to draw the axis. This option override fontfile and fontcolor option.

axis, text

Enable/disable drawing text to the axis. If it is set to 0, drawing to the axis is disabled, ignoring
fontfile and axisfile option. Default value is 1.

csp

Set colorspace. The accepted values are:

‘unspecified’

Unspecified (default)

‘bt709’

BT.709

‘fcc’

FCC

‘bt470bg’

BT.470BG or BT.601-6 625

‘smpte170m’

SMPTE-170M or BT.601-6 525

‘smpte240m’

SMPTE-240M

‘bt2020ncl’

BT.2020 with non-constant luminance

cscheme

Set spectrogram color scheme. This is list of floating point values with format
left_r|left_g|left_b|right_r|right_g|right_b. The default is
1|0.5|0|0|0.5|1.

41.18.1 Examples# TOC

Playing audio while showing the spectrum:

ffplay -f lavfi ’amovie=a.mp3, asplit [a][out1]; [a] showcqt [out0]’

Same as above, but with frame rate 30 fps:

ffplay -f lavfi ’amovie=a.mp3, asplit [a][out1]; [a] showcqt=fps=30:count=5 [out0]’

Playing at 1280x720:

ffplay -f lavfi ’amovie=a.mp3, asplit [a][out1]; [a] showcqt=s=1280x720:count=4 [out0]’

Disable sonogram display:

sono_h=0

A1 and its harmonics: A1, A2, (near)E3, A3:

ffplay -f lavfi ’aevalsrc=0.1*sin(2*PI*55*t)+0.1*sin(4*PI*55*t)+0.1*sin(6*PI*55*t)+0.1*sin(8*PI*55*t),
 asplit[a][out1]; [a] showcqt [out0]’

Same as above, but with more accuracy in frequency domain:

ffplay -f lavfi ’aevalsrc=0.1*sin(2*PI*55*t)+0.1*sin(4*PI*55*t)+0.1*sin(6*PI*55*t)+0.1*sin(8*PI*55*t),
 asplit[a][out1]; [a] showcqt=timeclamp=0.5 [out0]’

Custom volume:

bar_v=10:sono_v=bar_v*a_weighting(f)

Custom gamma, now spectrum is linear to the amplitude.

bar_g=2:sono_g=2

Custom tlength equation:

tc=0.33:tlength=’st(0,0.17); 384*tc / (384 / ld(0) + tc*f /(1-ld(0))) + 384*tc / (tc*f / ld(0) + 384 /(1-ld(0)))’

Custom fontcolor and fontfile, C-note is colored green, others are colored blue:

fontcolor=’if(mod(floor(midi(f)+0.5),12), 0x0000FF, g(1))’:fontfile=myfont.ttf

Custom font using fontconfig:

font=’Courier New,Monospace,mono|bold’

Custom frequency range with custom axis using image file:

axisfile=myaxis.png:basefreq=40:endfreq=10000

41.19 showfreqs# TOC

Convert input audio to video output representing the audio power spectrum. Audio amplitude is on Y-axis
while frequency is on X-axis.

The filter accepts the following options:

size, s

Specify size of video. For the syntax of this option, check the (ffmpeg-utils)"Video size" section in
the ffmpeg-utils manual. Default is 1024x512.

mode

Set display mode. This set how each frequency bin will be represented.

It accepts the following values:

‘line’
‘bar’
‘dot’

Default is bar.

ascale

Set amplitude scale.

It accepts the following values:

‘lin’

Linear scale.

‘sqrt’

Square root scale.

‘cbrt’

Cubic root scale.

‘log’

Logarithmic scale.

Default is log.

fscale

Set frequency scale.

It accepts the following values:

‘lin’

Linear scale.

‘log’

Logarithmic scale.

‘rlog’

Reverse logarithmic scale.

Default is lin.

win_size

Set window size.

It accepts the following values:

‘w16’
‘w32’

‘w64’
‘w128’
‘w256’
‘w512’
‘w1024’
‘w2048’
‘w4096’
‘w8192’
‘w16384’
‘w32768’
‘w65536’

Default is w2048

win_func

Set windowing function.

It accepts the following values:

‘rect’
‘bartlett’
‘hanning’
‘hamming’
‘blackman’
‘welch’
‘flattop’
‘bharris’
‘bnuttall’
‘bhann’
‘sine’
‘nuttall’
‘lanczos’
‘gauss’
‘tukey’
‘dolph’
‘cauchy’
‘parzen’
‘poisson’

Default is hanning.

overlap

Set window overlap. In range [0, 1]. Default is 1, which means optimal overlap for selected
window function will be picked.

averaging

Set time averaging. Setting this to 0 will display current maximal peaks. Default is 1, which means
time averaging is disabled.

colors

Specify list of colors separated by space or by ’|’ which will be used to draw channel frequencies.
Unrecognized or missing colors will be replaced by white color.

cmode

Set channel display mode.

It accepts the following values:

‘combined’
‘separate’

Default is combined.

minamp

Set minimum amplitude used in log amplitude scaler.

41.20 showspectrum# TOC

Convert input audio to a video output, representing the audio frequency spectrum.

The filter accepts the following options:

size, s

Specify the video size for the output. For the syntax of this option, check the (ffmpeg-utils)"Video
size" section in the ffmpeg-utils manual. Default value is 640x512.

slide

Specify how the spectrum should slide along the window.

It accepts the following values:

‘replace’

the samples start again on the left when they reach the right

‘scroll’

the samples scroll from right to left

‘fullframe’

frames are only produced when the samples reach the right

‘rscroll’

the samples scroll from left to right

Default value is replace.

mode

Specify display mode.

It accepts the following values:

‘combined’

all channels are displayed in the same row

‘separate’

all channels are displayed in separate rows

Default value is ‘combined’.

color

Specify display color mode.

It accepts the following values:

‘channel’

each channel is displayed in a separate color

‘intensity’

each channel is displayed using the same color scheme

‘rainbow’

each channel is displayed using the rainbow color scheme

‘moreland’

each channel is displayed using the moreland color scheme

‘nebulae’

each channel is displayed using the nebulae color scheme

‘fire’

each channel is displayed using the fire color scheme

‘fiery’

each channel is displayed using the fiery color scheme

‘fruit’

each channel is displayed using the fruit color scheme

‘cool’

each channel is displayed using the cool color scheme

Default value is ‘channel’.

scale

Specify scale used for calculating intensity color values.

It accepts the following values:

‘lin’

linear

‘sqrt’

square root, default

‘cbrt’

cubic root

‘log’

logarithmic

‘4thrt’

4th root

‘5thrt’

5th root

Default value is ‘sqrt’.

saturation

Set saturation modifier for displayed colors. Negative values provide alternative color scheme. 0 is
no saturation at all. Saturation must be in [-10.0, 10.0] range. Default value is 1.

win_func

Set window function.

It accepts the following values:

‘rect’
‘bartlett’
‘hann’
‘hanning’
‘hamming’
‘blackman’
‘welch’
‘flattop’
‘bharris’
‘bnuttall’
‘bhann’
‘sine’
‘nuttall’
‘lanczos’
‘gauss’
‘tukey’
‘dolph’
‘cauchy’
‘parzen’
‘poisson’

Default value is hann.

orientation

Set orientation of time vs frequency axis. Can be vertical or horizontal. Default is
vertical.

overlap

Set ratio of overlap window. Default value is 0. When value is 1 overlap is set to recommended size
for specific window function currently used.

gain

Set scale gain for calculating intensity color values. Default value is 1.

data

Set which data to display. Can be magnitude, default or phase.

rotation

Set color rotation, must be in [-1.0, 1.0] range. Default value is 0.

The usage is very similar to the showwaves filter; see the examples in that section.

41.20.1 Examples# TOC

Large window with logarithmic color scaling:

showspectrum=s=1280x480:scale=log

Complete example for a colored and sliding spectrum per channel using ffplay:

ffplay -f lavfi ’amovie=input.mp3, asplit [a][out1];
 [a] showspectrum=mode=separate:color=intensity:slide=1:scale=cbrt [out0]’

41.21 showspectrumpic# TOC

Convert input audio to a single video frame, representing the audio frequency spectrum.

The filter accepts the following options:

size, s

Specify the video size for the output. For the syntax of this option, check the (ffmpeg-utils)"Video
size" section in the ffmpeg-utils manual. Default value is 4096x2048.

mode

Specify display mode.

It accepts the following values:

‘combined’

all channels are displayed in the same row

‘separate’

all channels are displayed in separate rows

Default value is ‘combined’.

color

Specify display color mode.

It accepts the following values:

‘channel’

each channel is displayed in a separate color

‘intensity’

each channel is displayed using the same color scheme

‘rainbow’

each channel is displayed using the rainbow color scheme

‘moreland’

each channel is displayed using the moreland color scheme

‘nebulae’

each channel is displayed using the nebulae color scheme

‘fire’

each channel is displayed using the fire color scheme

‘fiery’

each channel is displayed using the fiery color scheme

‘fruit’

each channel is displayed using the fruit color scheme

‘cool’

each channel is displayed using the cool color scheme

Default value is ‘intensity’.

scale

Specify scale used for calculating intensity color values.

It accepts the following values:

‘lin’

linear

‘sqrt’

square root, default

‘cbrt’

cubic root

‘log’

logarithmic

‘4thrt’

4th root

‘5thrt’

5th root

Default value is ‘log’.

saturation

Set saturation modifier for displayed colors. Negative values provide alternative color scheme. 0 is
no saturation at all. Saturation must be in [-10.0, 10.0] range. Default value is 1.

win_func

Set window function.

It accepts the following values:

‘rect’

‘bartlett’
‘hann’
‘hanning’
‘hamming’
‘blackman’
‘welch’
‘flattop’
‘bharris’
‘bnuttall’
‘bhann’
‘sine’
‘nuttall’
‘lanczos’
‘gauss’
‘tukey’
‘dolph’
‘cauchy’
‘parzen’
‘poisson’

Default value is hann.

orientation

Set orientation of time vs frequency axis. Can be vertical or horizontal. Default is
vertical.

gain

Set scale gain for calculating intensity color values. Default value is 1.

legend

Draw time and frequency axes and legends. Default is enabled.

rotation

Set color rotation, must be in [-1.0, 1.0] range. Default value is 0.

41.21.1 Examples# TOC

Extract an audio spectrogram of a whole audio track in a 1024x1024 picture using ffmpeg:

ffmpeg -i audio.flac -lavfi showspectrumpic=s=1024x1024 spectrogram.png

41.22 showvolume# TOC

Convert input audio volume to a video output.

The filter accepts the following options:

rate, r

Set video rate.

b

Set border width, allowed range is [0, 5]. Default is 1.

w

Set channel width, allowed range is [80, 8192]. Default is 400.

h

Set channel height, allowed range is [1, 900]. Default is 20.

f

Set fade, allowed range is [0.001, 1]. Default is 0.95.

c

Set volume color expression.

The expression can use the following variables:

VOLUME

Current max volume of channel in dB.

PEAK

Current peak.

CHANNEL

Current channel number, starting from 0.

t

If set, displays channel names. Default is enabled.

v

If set, displays volume values. Default is enabled.

o

Set orientation, can be horizontal or vertical, default is horizontal.

s

Set step size, allowed range s [0, 5]. Default is 0, which means step is disabled.

41.23 showwaves# TOC

Convert input audio to a video output, representing the samples waves.

The filter accepts the following options:

size, s

Specify the video size for the output. For the syntax of this option, check the (ffmpeg-utils)"Video
size" section in the ffmpeg-utils manual. Default value is 600x240.

mode

Set display mode.

Available values are:

‘point’

Draw a point for each sample.

‘line’

Draw a vertical line for each sample.

‘p2p’

Draw a point for each sample and a line between them.

‘cline’

Draw a centered vertical line for each sample.

Default value is point.

n

Set the number of samples which are printed on the same column. A larger value will decrease the
frame rate. Must be a positive integer. This option can be set only if the value for rate is not explicitly
specified.

rate, r

Set the (approximate) output frame rate. This is done by setting the option n. Default value is "25".

split_channels

Set if channels should be drawn separately or overlap. Default value is 0.

colors

Set colors separated by ’|’ which are going to be used for drawing of each channel.

scale

Set amplitude scale.

Available values are:

‘lin’

Linear.

‘log’

Logarithmic.

‘sqrt’

Square root.

‘cbrt’

Cubic root.

Default is linear.

41.23.1 Examples# TOC

Output the input file audio and the corresponding video representation at the same time:

amovie=a.mp3,asplit[out0],showwaves[out1]

Create a synthetic signal and show it with showwaves, forcing a frame rate of 30 frames per second:

aevalsrc=sin(1*2*PI*t)*sin(880*2*PI*t):cos(2*PI*200*t),asplit[out0],showwaves=r=30[out1]

41.24 showwavespic# TOC

Convert input audio to a single video frame, representing the samples waves.

The filter accepts the following options:

size, s

Specify the video size for the output. For the syntax of this option, check the (ffmpeg-utils)"Video
size" section in the ffmpeg-utils manual. Default value is 600x240.

split_channels

Set if channels should be drawn separately or overlap. Default value is 0.

colors

Set colors separated by ’|’ which are going to be used for drawing of each channel.

scale

Set amplitude scale.

Available values are:

‘lin’

Linear.

‘log’

Logarithmic.

‘sqrt’

Square root.

‘cbrt’

Cubic root.

Default is linear.

41.24.1 Examples# TOC

Extract a channel split representation of the wave form of a whole audio track in a 1024x800 picture
using ffmpeg:

ffmpeg -i audio.flac -lavfi showwavespic=split_channels=1:s=1024x800 waveform.png

41.25 sidedata, asidedata# TOC

Delete frame side data, or select frames based on it.

This filter accepts the following options:

mode

Set mode of operation of the filter.

Can be one of the following:

‘select’

Select every frame with side data of type.

‘delete’

Delete side data of type. If type is not set, delete all side data in the frame.

type

Set side data type used with all modes. Must be set for select mode. For the list of frame side data
types, refer to the AVFrameSideDataType enum in libavutil/frame.h. For example, to
choose AV_FRAME_DATA_PANSCAN side data, you must specify PANSCAN.

41.26 spectrumsynth# TOC

Sythesize audio from 2 input video spectrums, first input stream represents magnitude across time and
second represents phase across time. The filter will transform from frequency domain as displayed in
videos back to time domain as presented in audio output.

This filter is primarily created for reversing processed showspectrum filter outputs, but can synthesize
sound from other spectrograms too. But in such case results are going to be poor if the phase data is not
available, because in such cases phase data need to be recreated, usually its just recreated from random
noise. For best results use gray only output (channel color mode in showspectrum filter) and log scale
for magnitude video and lin scale for phase video. To produce phase, for 2nd video, use data option.
Inputs videos should generally use fullframe slide mode as that saves resources needed for decoding
video.

The filter accepts the following options:

sample_rate

Specify sample rate of output audio, the sample rate of audio from which spectrum was generated
may differ.

channels

Set number of channels represented in input video spectrums.

scale

Set scale which was used when generating magnitude input spectrum. Can be lin or log. Default is
log.

slide

Set slide which was used when generating inputs spectrums. Can be replace, scroll,
fullframe or rscroll. Default is fullframe.

win_func

Set window function used for resynthesis.

overlap

Set window overlap. In range [0, 1]. Default is 1, which means optimal overlap for selected
window function will be picked.

orientation

Set orientation of input videos. Can be vertical or horizontal. Default is vertical.

41.26.1 Examples# TOC

First create magnitude and phase videos from audio, assuming audio is stereo with 44100 sample
rate, then resynthesize videos back to audio with spectrumsynth:

ffmpeg -i input.flac -lavfi showspectrum=mode=separate:scale=log:overlap=0.875:color=channel:slide=fullframe:data=magnitude -an -c:v rawvideo magnitude.nut
ffmpeg -i input.flac -lavfi showspectrum=mode=separate:scale=lin:overlap=0.875:color=channel:slide=fullframe:data=phase -an -c:v rawvideo phase.nut
ffmpeg -i magnitude.nut -i phase.nut -lavfi spectrumsynth=channels=2:sample_rate=44100:win_func=hann:overlap=0.875:slide=fullframe output.flac

41.27 split, asplit# TOC

Split input into several identical outputs.

asplit works with audio input, split with video.

The filter accepts a single parameter which specifies the number of outputs. If unspecified, it defaults to 2.

41.27.1 Examples# TOC

Create two separate outputs from the same input:

[in] split [out0][out1]

To create 3 or more outputs, you need to specify the number of outputs, like in:

[in] asplit=3 [out0][out1][out2]

Create two separate outputs from the same input, one cropped and one padded:

[in] split [splitout1][splitout2];
[splitout1] crop=100:100:0:0 [cropout];
[splitout2] pad=200:200:100:100 [padout];

Create 5 copies of the input audio with ffmpeg:

ffmpeg -i INPUT -filter_complex asplit=5 OUTPUT

41.28 zmq, azmq# TOC

Receive commands sent through a libzmq client, and forward them to filters in the filtergraph.

zmq and azmq work as a pass-through filters. zmq must be inserted between two video filters, azmq
between two audio filters.

To enable these filters you need to install the libzmq library and headers and configure FFmpeg with
--enable-libzmq.

For more information about libzmq see: http://www.zeromq.org/

The zmq and azmq filters work as a libzmq server, which receives messages sent through a network
interface defined by the bind_address option.

The received message must be in the form:

TARGET COMMAND [ARG]

TARGET specifies the target of the command, usually the name of the filter class or a specific filter
instance name.

COMMAND specifies the name of the command for the target filter.

ARG is optional and specifies the optional argument list for the given COMMAND.

Upon reception, the message is processed and the corresponding command is injected into the filtergraph.
Depending on the result, the filter will send a reply to the client, adopting the format:

http://www.zeromq.org/

ERROR_CODE ERROR_REASON
MESSAGE

MESSAGE is optional.

41.28.1 Examples# TOC

Look at tools/zmqsend for an example of a zmq client which can be used to send commands
processed by these filters.

Consider the following filtergraph generated by ffplay

ffplay -dumpgraph 1 -f lavfi "
color=s=100x100:c=red [l];
color=s=100x100:c=blue [r];
nullsrc=s=200x100, zmq [bg];
[bg][l] overlay [bg+l];
[bg+l][r] overlay=x=100 "

To change the color of the left side of the video, the following command can be used:

echo Parsed_color_0 c yellow | tools/zmqsend

To change the right side:

echo Parsed_color_1 c pink | tools/zmqsend

42 Multimedia Sources# TOC

Below is a description of the currently available multimedia sources.

42.1 amovie# TOC

This is the same as movie source, except it selects an audio stream by default.

42.2 movie# TOC

Read audio and/or video stream(s) from a movie container.

It accepts the following parameters:

filename

The name of the resource to read (not necessarily a file; it can also be a device or a stream accessed
through some protocol).

format_name, f

Specifies the format assumed for the movie to read, and can be either the name of a container or an
input device. If not specified, the format is guessed from movie_name or by probing.

seek_point, sp

Specifies the seek point in seconds. The frames will be output starting from this seek point. The
parameter is evaluated with av_strtod, so the numerical value may be suffixed by an IS postfix.
The default value is "0".

streams, s

Specifies the streams to read. Several streams can be specified, separated by "+". The source will then
have as many outputs, in the same order. The syntax is explained in the “Stream specifiers” section in
the ffmpeg manual. Two special names, "dv" and "da" specify respectively the default (best suited)
video and audio stream. Default is "dv", or "da" if the filter is called as "amovie".

stream_index, si

Specifies the index of the video stream to read. If the value is -1, the most suitable video stream will
be automatically selected. The default value is "-1". Deprecated. If the filter is called "amovie", it will
select audio instead of video.

loop

Specifies how many times to read the stream in sequence. If the value is 0, the stream will be looped
infinitely. Default value is "1".

Note that when the movie is looped the source timestamps are not changed, so it will generate non
monotonically increasing timestamps.

discontinuity

Specifies the time difference between frames above which the point is considered a timestamp
discontinuity which is removed by adjusting the later timestamps.

It allows overlaying a second video on top of the main input of a filtergraph, as shown in this graph:

input -----------> deltapts0 --> overlay --> output
 ^
 |
movie --> scale--> deltapts1 -------+

42.2.1 Examples# TOC

Skip 3.2 seconds from the start of the AVI file in.avi, and overlay it on top of the input labelled "in":

movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [over];
[in] setpts=PTS-STARTPTS [main];
[main][over] overlay=16:16 [out]

Read from a video4linux2 device, and overlay it on top of the input labelled "in":

movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [over];
[in] setpts=PTS-STARTPTS [main];
[main][over] overlay=16:16 [out]

Read the first video stream and the audio stream with id 0x81 from dvd.vob; the video is connected to
the pad named "video" and the audio is connected to the pad named "audio":

movie=dvd.vob:s=v:0+#0x81 [video] [audio]

42.2.2 Commands# TOC

Both movie and amovie support the following commands:

seek

Perform seek using "av_seek_frame". The syntax is: seek stream_index|timestamp|flags

stream_index: If stream_index is -1, a default stream is selected, and timestamp is automatically
converted from AV_TIME_BASE units to the stream specific time_base.
timestamp: Timestamp in AVStream.time_base units or, if no stream is specified, in
AV_TIME_BASE units.
flags: Flags which select direction and seeking mode.

get_duration

Get movie duration in AV_TIME_BASE units.

43 See Also# TOC

ffmpeg ffplay, ffprobe, ffserver, ffmpeg-utils, ffmpeg-scaler, ffmpeg-resampler, ffmpeg-codecs,
ffmpeg-bitstream-filters, ffmpeg-formats, ffmpeg-devices, ffmpeg-protocols, ffmpeg-filters

44 Authors# TOC

The FFmpeg developers.

For details about the authorship, see the Git history of the project (git://source.ffmpeg.org/ffmpeg), e.g. by
typing the command git log in the FFmpeg source directory, or browsing the online repository at
http://source.ffmpeg.org.

Maintainers for the specific components are listed in the file MAINTAINERS in the source code tree.

This document was generated using makeinfo.

http://source.ffmpeg.org/
http://www.gnu.org/software/texinfo/

	ffmpeg Documentation
	Table of Contents
	1 Synopsis# TOC
	2 Description# TOC
	3 Detailed description# TOC
	3.1 Filtering# TOC
	3.1.1 Simple filtergraphs# TOC
	3.1.2 Complex filtergraphs# TOC

	3.2 Stream copy# TOC

	4 Stream selection# TOC
	5 Options# TOC
	5.1 Stream specifiers# TOC
	5.2 Generic options# TOC
	5.3 AVOptions# TOC
	5.4 Main options# TOC
	5.5 Video Options# TOC
	5.6 Advanced Video options# TOC
	5.7 Audio Options# TOC
	5.8 Advanced Audio options# TOC
	5.9 Subtitle options# TOC
	5.10 Advanced Subtitle options# TOC
	5.11 Advanced options# TOC
	5.12 Preset files# TOC
	5.12.1 ffpreset files# TOC
	5.12.2 avpreset files# TOC

	6 Examples# TOC
	6.1 Video and Audio grabbing# TOC
	6.2 X11 grabbing# TOC
	6.3 Video and Audio file format conversion# TOC

	7 Syntax# TOC
	7.1 Quoting and escaping# TOC
	7.1.1 Examples# TOC

	7.2 Date# TOC
	7.3 Time duration# TOC
	7.3.1 Examples# TOC

	7.4 Video size# TOC
	7.5 Video rate# TOC
	7.6 Ratio# TOC
	7.7 Color# TOC
	7.8 Channel Layout# TOC

	8 Expression Evaluation# TOC
	9 Codec Options# TOC
	10 Decoders# TOC
	11 Video Decoders# TOC
	11.1 rawvideo# TOC
	11.1.1 Options# TOC

	12 Audio Decoders# TOC
	12.1 ac3# TOC
	12.1.1 AC-3 Decoder Options# TOC

	12.2 flac# TOC
	12.2.1 FLAC Decoder options# TOC

	12.3 ffwavesynth# TOC
	12.4 libcelt# TOC
	12.5 libgsm# TOC
	12.6 libilbc# TOC
	12.6.1 Options# TOC

	12.7 libopencore-amrnb# TOC
	12.8 libopencore-amrwb# TOC
	12.9 libopus# TOC

	13 Subtitles Decoders# TOC
	13.1 dvbsub# TOC
	13.1.1 Options# TOC

	13.2 dvdsub# TOC
	13.2.1 Options# TOC

	13.3 libzvbi-teletext# TOC
	13.3.1 Options# TOC

	14 Encoders# TOC
	15 Audio Encoders# TOC
	15.1 aac# TOC
	15.1.1 Options# TOC

	15.2 ac3 and ac3_fixed# TOC
	15.2.1 AC-3 Metadata# TOC
	15.2.1.1 Metadata Control Options# TOC
	15.2.1.2 Downmix Levels# TOC
	15.2.1.3 Audio Production Information# TOC
	15.2.1.4 Other Metadata Options# TOC
	15.2.2 Extended Bitstream Information# TOC
	15.2.2.1 Extended Bitstream Information - Part 1# TOC
	15.2.2.2 Extended Bitstream Information - Part 2# TOC
	15.2.3 Other AC-3 Encoding Options# TOC
	15.2.4 Floating-Point-Only AC-3 Encoding Options# TOC

	15.3 flac# TOC
	15.3.1 Options# TOC

	15.4 opus# TOC
	15.4.1 Options# TOC

	15.5 libfdk_aac# TOC
	15.5.1 Options# TOC
	15.5.2 Examples# TOC

	15.6 libmp3lame# TOC
	15.6.1 Options# TOC

	15.7 libopencore-amrnb# TOC
	15.7.1 Options# TOC

	15.8 libopus# TOC
	15.8.1 Option Mapping# TOC

	15.9 libshine# TOC
	15.9.1 Options# TOC

	15.10 libtwolame# TOC
	15.10.1 Options# TOC

	15.11 libvo-amrwbenc# TOC
	15.11.1 Options# TOC

	15.12 libvorbis# TOC
	15.12.1 Options# TOC

	15.13 libwavpack# TOC
	15.13.1 Options# TOC

	15.14 mjpeg# TOC
	15.14.1 Options# TOC

	15.15 wavpack# TOC
	15.15.1 Options# TOC
	15.15.1.1 Shared options# TOC
	15.15.1.2 Private options# TOC

	16 Video Encoders# TOC
	16.1 Hap# TOC
	16.1.1 Options# TOC

	16.2 jpeg2000# TOC
	16.2.1 Options# TOC

	16.3 libkvazaar# TOC
	16.3.1 Options# TOC

	16.4 libopenh264# TOC
	16.4.1 Options# TOC

	16.5 libtheora# TOC
	16.5.1 Options# TOC
	16.5.2 Examples# TOC

	16.6 libvpx# TOC
	16.6.1 Options# TOC

	16.7 libwebp# TOC
	16.7.1 Pixel Format# TOC
	16.7.2 Options# TOC

	16.8 libx264, libx264rgb# TOC
	16.8.1 Supported Pixel Formats# TOC
	16.8.2 Options# TOC

	16.9 libx265# TOC
	16.9.1 Options# TOC

	16.10 libxvid# TOC
	16.10.1 Options# TOC

	16.11 mpeg2# TOC
	16.11.1 Options# TOC

	16.12 png# TOC
	16.12.1 Private options# TOC

	16.13 ProRes# TOC
	16.13.1 Private Options for prores-ks# TOC
	16.13.2 Speed considerations# TOC

	16.14 QSV encoders# TOC
	16.15 snow# TOC
	16.15.1 Options# TOC

	16.16 VAAPI encoders# TOC
	16.17 vc2# TOC
	16.17.1 Options# TOC

	17 Subtitles Encoders# TOC
	17.1 dvdsub# TOC
	17.1.1 Options# TOC

	18 Bitstream Filters# TOC
	18.1 aac_adtstoasc# TOC
	18.2 chomp# TOC
	18.3 dca_core# TOC
	18.4 dump_extra# TOC
	18.5 extract_extradata# TOC
	18.6 h264_metadata# TOC
	18.7 h264_mp4toannexb# TOC
	18.8 h264_redundant_pps# TOC
	18.9 hevc_metadata# TOC
	18.10 hevc_mp4toannexb# TOC
	18.11 imxdump# TOC
	18.12 mjpeg2jpeg# TOC
	18.13 mjpegadump# TOC
	18.14 mov2textsub# TOC
	18.15 mp3decomp# TOC
	18.16 mpeg2_metadata# TOC
	18.17 mpeg4_unpack_bframes# TOC
	18.18 noise# TOC
	18.19 null# TOC
	18.20 remove_extra# TOC
	18.21 text2movsub# TOC
	18.22 trace_headers# TOC
	18.23 vp9_superframe# TOC
	18.24 vp9_superframe_split# TOC
	18.25 vp9_raw_reorder# TOC

	19 Format Options# TOC
	19.1 Format stream specifiers# TOC

	20 Demuxers# TOC
	20.1 aa# TOC
	20.2 applehttp# TOC
	20.3 apng# TOC
	20.4 asf# TOC
	20.5 concat# TOC
	20.5.1 Syntax# TOC
	20.5.2 Options# TOC
	20.5.3 Examples# TOC

	20.6 flv, live_flv# TOC
	20.7 gif# TOC
	20.8 hls# TOC
	20.9 image2# TOC
	20.9.1 Examples# TOC

	20.10 libgme# TOC
	20.11 libopenmpt# TOC
	20.12 mov/mp4/3gp/QuickTime# TOC
	20.13 mpegts# TOC
	20.14 mpjpeg# TOC
	20.15 rawvideo# TOC
	20.16 sbg# TOC
	20.17 tedcaptions# TOC

	21 Muxers# TOC
	21.1 aiff# TOC
	21.1.1 Options# TOC

	21.2 asf# TOC
	21.2.1 Options# TOC

	21.3 avi# TOC
	21.3.1 Options# TOC

	21.4 chromaprint# TOC
	21.4.1 Options# TOC

	21.5 crc# TOC
	21.5.1 Examples# TOC

	21.6 flv# TOC
	21.7 dash# TOC
	21.8 framecrc# TOC
	21.8.1 Examples# TOC

	21.9 framehash# TOC
	21.9.1 Examples# TOC

	21.10 framemd5# TOC
	21.10.1 Examples# TOC

	21.11 gif# TOC
	21.12 hash# TOC
	21.12.1 Examples# TOC

	21.13 hls# TOC
	21.13.1 Options# TOC

	21.14 ico# TOC
	21.15 image2# TOC
	21.15.1 Examples# TOC
	21.15.2 Options# TOC

	21.16 matroska# TOC
	21.16.1 Metadata# TOC
	21.16.2 Options# TOC

	21.17 md5# TOC
	21.17.1 Examples# TOC

	21.18 mov, mp4, ismv# TOC
	21.18.1 Options# TOC
	21.18.2 Example# TOC
	21.18.3 Audible AAX# TOC

	21.19 mp3# TOC
	21.20 mpegts# TOC
	21.20.1 Options# TOC
	21.20.2 Example# TOC

	21.21 mxf, mxf_d10# TOC
	21.21.1 Options# TOC

	21.22 null# TOC
	21.23 nut# TOC
	21.24 ogg# TOC
	21.25 segment, stream_segment, ssegment# TOC
	21.25.1 Options# TOC
	21.25.2 Examples# TOC

	21.26 smoothstreaming# TOC
	21.27 fifo# TOC
	21.27.1 Examples# TOC

	21.28 tee# TOC
	21.28.1 Examples# TOC

	21.29 webm_dash_manifest# TOC
	21.29.1 Options# TOC
	21.29.2 Example# TOC

	21.30 webm_chunk# TOC
	21.30.1 Options# TOC
	21.30.2 Example# TOC

	22 Metadata# TOC
	23 Protocol Options# TOC
	24 Protocols# TOC
	24.1 async# TOC
	24.2 bluray# TOC
	24.3 cache# TOC
	24.4 concat# TOC
	24.5 crypto# TOC
	24.6 data# TOC
	24.7 file# TOC
	24.8 ftp# TOC
	24.9 gopher# TOC
	24.10 hls# TOC
	24.11 http# TOC
	24.11.1 HTTP Cookies# TOC

	24.12 Icecast# TOC
	24.13 mmst# TOC
	24.14 mmsh# TOC
	24.15 md5# TOC
	24.16 pipe# TOC
	24.17 prompeg# TOC
	24.18 rtmp# TOC
	24.19 rtmpe# TOC
	24.20 rtmps# TOC
	24.21 rtmpt# TOC
	24.22 rtmpte# TOC
	24.23 rtmpts# TOC
	24.24 libsmbclient# TOC
	24.25 libssh# TOC
	24.26 librtmp rtmp, rtmpe, rtmps, rtmpt, rtmpte# TOC
	24.27 rtp# TOC
	24.28 rtsp# TOC
	24.28.1 Examples# TOC

	24.29 sap# TOC
	24.29.1 Muxer# TOC
	24.29.2 Demuxer# TOC

	24.30 sctp# TOC
	24.31 srtp# TOC
	24.32 subfile# TOC
	24.33 tee# TOC
	24.34 tcp# TOC
	24.35 tls# TOC
	24.36 udp# TOC
	24.36.1 Examples# TOC

	24.37 unix# TOC

	25 Device Options# TOC
	26 Input Devices# TOC
	26.1 alsa# TOC
	26.1.1 Options# TOC

	26.2 avfoundation# TOC
	26.2.1 Options# TOC
	26.2.2 Examples# TOC

	26.3 bktr# TOC
	26.3.1 Options# TOC

	26.4 decklink# TOC
	26.4.1 Options# TOC
	26.4.2 Examples# TOC

	26.5 kmsgrab# TOC
	26.5.1 Options# TOC
	26.5.2 Examples# TOC

	26.6 libndi_newtek# TOC
	26.6.1 Options# TOC
	26.6.2 Examples# TOC

	26.7 dshow# TOC
	26.7.1 Options# TOC
	26.7.2 Examples# TOC

	26.8 fbdev# TOC
	26.8.1 Options# TOC

	26.9 gdigrab# TOC
	26.9.1 Options# TOC

	26.10 iec61883# TOC
	26.10.1 Options# TOC
	26.10.2 Examples# TOC

	26.11 jack# TOC
	26.11.1 Options# TOC

	26.12 lavfi# TOC
	26.12.1 Options# TOC
	26.12.2 Examples# TOC

	26.13 libcdio# TOC
	26.13.1 Options# TOC

	26.14 libdc1394# TOC
	26.15 openal# TOC
	26.15.1 Options# TOC
	26.15.2 Examples# TOC

	26.16 oss# TOC
	26.16.1 Options# TOC

	26.17 pulse# TOC
	26.17.1 Options# TOC
	26.17.2 Examples# TOC

	26.18 sndio# TOC
	26.18.1 Options# TOC

	26.19 video4linux2, v4l2# TOC
	26.19.1 Options# TOC

	26.20 vfwcap# TOC
	26.20.1 Options# TOC

	26.21 x11grab# TOC
	26.21.1 Options# TOC

	27 Output Devices# TOC
	27.1 alsa# TOC
	27.1.1 Examples# TOC

	27.2 caca# TOC
	27.2.1 Options# TOC
	27.2.2 Examples# TOC

	27.3 decklink# TOC
	27.3.1 Options# TOC
	27.3.2 Examples# TOC

	27.4 libndi_newtek# TOC
	27.4.1 Options# TOC
	27.4.2 Examples# TOC

	27.5 fbdev# TOC
	27.5.1 Options# TOC
	27.5.2 Examples# TOC

	27.6 opengl# TOC
	27.6.1 Options# TOC
	27.6.2 Examples# TOC

	27.7 oss# TOC
	27.8 pulse# TOC
	27.8.1 Options# TOC
	27.8.2 Examples# TOC

	27.9 sdl# TOC
	27.9.1 Options# TOC
	27.9.2 Interactive commands# TOC
	27.9.3 Examples# TOC

	27.10 sndio# TOC
	27.11 xv# TOC
	27.11.1 Options# TOC
	27.11.2 Examples# TOC

	28 Resampler Options# TOC
	29 Scaler Options# TOC
	30 Filtering Introduction# TOC
	31 graph2dot# TOC
	32 Filtergraph description# TOC
	32.1 Filtergraph syntax# TOC
	32.2 Notes on filtergraph escaping# TOC

	33 Timeline editing# TOC
	34 Options for filters with several inputs (framesync)# TOC
	35 Audio Filters# TOC
	35.1 acompressor# TOC
	35.2 acontrast# TOC
	35.3 acopy# TOC
	35.4 acrossfade# TOC
	35.4.1 Examples# TOC

	35.5 acrusher# TOC
	35.6 adelay# TOC
	35.6.1 Examples# TOC

	35.7 aecho# TOC
	35.7.1 Examples# TOC

	35.8 aemphasis# TOC
	35.9 aeval# TOC
	35.9.1 Examples# TOC

	35.10 afade# TOC
	35.10.1 Examples# TOC

	35.11 afftfilt# TOC
	35.11.1 Examples# TOC

	35.12 afir# TOC
	35.12.1 Examples# TOC

	35.13 aformat# TOC
	35.14 agate# TOC
	35.15 alimiter# TOC
	35.16 allpass# TOC
	35.17 aloop# TOC
	35.18 amerge# TOC
	35.18.1 Examples# TOC

	35.19 amix# TOC
	35.20 anequalizer# TOC
	35.20.1 Examples# TOC
	35.20.2 Commands# TOC

	35.21 anull# TOC
	35.22 apad# TOC
	35.22.1 Examples# TOC

	35.23 aphaser# TOC
	35.24 apulsator# TOC
	35.25 aresample# TOC
	35.25.1 Examples# TOC

	35.26 areverse# TOC
	35.26.1 Examples# TOC

	35.27 asetnsamples# TOC
	35.28 asetrate# TOC
	35.29 ashowinfo# TOC
	35.30 astats# TOC
	35.31 atempo# TOC
	35.31.1 Examples# TOC

	35.32 atrim# TOC
	35.33 bandpass# TOC
	35.34 bandreject# TOC
	35.35 bass# TOC
	35.36 biquad# TOC
	35.37 bs2b# TOC
	35.38 channelmap# TOC
	35.39 channelsplit# TOC
	35.40 chorus# TOC
	35.40.1 Examples# TOC

	35.41 compand# TOC
	35.41.1 Examples# TOC

	35.42 compensationdelay# TOC
	35.43 crossfeed# TOC
	35.44 crystalizer# TOC
	35.45 dcshift# TOC
	35.46 dynaudnorm# TOC
	35.47 earwax# TOC
	35.48 equalizer# TOC
	35.48.1 Examples# TOC

	35.49 extrastereo# TOC
	35.50 firequalizer# TOC
	35.50.1 Examples# TOC

	35.51 flanger# TOC
	35.52 haas# TOC
	35.53 hdcd# TOC
	35.54 headphone# TOC
	35.54.1 Examples# TOC

	35.55 highpass# TOC
	35.56 join# TOC
	35.57 ladspa# TOC
	35.57.1 Examples# TOC
	35.57.2 Commands# TOC

	35.58 loudnorm# TOC
	35.59 lowpass# TOC
	35.59.1 Examples# TOC

	35.60 lv2# TOC
	35.60.1 Examples# TOC

	35.61 mcompand# TOC
	35.62 pan# TOC
	35.62.1 Mixing examples# TOC
	35.62.2 Remapping examples# TOC

	35.63 replaygain# TOC
	35.64 resample# TOC
	35.65 rubberband# TOC
	35.66 sidechaincompress# TOC
	35.66.1 Examples# TOC

	35.67 sidechaingate# TOC
	35.68 silencedetect# TOC
	35.68.1 Examples# TOC

	35.69 silenceremove# TOC
	35.69.1 Examples# TOC

	35.70 sofalizer# TOC
	35.70.1 Examples# TOC

	35.71 stereotools# TOC
	35.71.1 Examples# TOC

	35.72 stereowiden# TOC
	35.73 superequalizer# TOC
	35.74 surround# TOC
	35.75 treble# TOC
	35.76 tremolo# TOC
	35.77 vibrato# TOC
	35.78 volume# TOC
	35.78.1 Commands# TOC
	35.78.2 Examples# TOC

	35.79 volumedetect# TOC
	35.79.1 Examples# TOC

	36 Audio Sources# TOC
	36.1 abuffer# TOC
	36.1.1 Examples# TOC

	36.2 aevalsrc# TOC
	36.2.1 Examples# TOC

	36.3 anullsrc# TOC
	36.3.1 Examples# TOC

	36.4 flite# TOC
	36.4.1 Examples# TOC

	36.5 anoisesrc# TOC
	36.5.1 Examples# TOC

	36.6 sine# TOC
	36.6.1 Examples# TOC

	37 Audio Sinks# TOC
	37.1 abuffersink# TOC
	37.2 anullsink# TOC

	38 Video Filters# TOC
	38.1 alphaextract# TOC
	38.2 alphamerge# TOC
	38.3 ass# TOC
	38.4 atadenoise# TOC
	38.5 avgblur# TOC
	38.6 bbox# TOC
	38.7 bitplanenoise# TOC
	38.8 blackdetect# TOC
	38.9 blackframe# TOC
	38.10 blend, tblend# TOC
	38.10.1 Examples# TOC

	38.11 boxblur# TOC
	38.11.1 Examples# TOC

	38.12 bwdif# TOC
	38.13 chromakey# TOC
	38.13.1 Examples# TOC

	38.14 ciescope# TOC
	38.15 codecview# TOC
	38.15.1 Examples# TOC

	38.16 colorbalance# TOC
	38.16.1 Examples# TOC

	38.17 colorkey# TOC
	38.17.1 Examples# TOC

	38.18 colorlevels# TOC
	38.18.1 Examples# TOC

	38.19 colorchannelmixer# TOC
	38.19.1 Examples# TOC

	38.20 colormatrix# TOC
	38.21 colorspace# TOC
	38.22 convolution# TOC
	38.22.1 Examples# TOC

	38.23 convolve# TOC
	38.24 copy# TOC
	38.25 coreimage# TOC
	38.25.1 Examples# TOC

	38.26 crop# TOC
	38.26.1 Examples# TOC
	38.26.2 Commands# TOC

	38.27 cropdetect# TOC
	38.28 curves# TOC
	38.28.1 Examples# TOC

	38.29 datascope# TOC
	38.30 dctdnoiz# TOC
	38.30.1 Examples# TOC

	38.31 deband# TOC
	38.32 decimate# TOC
	38.33 deflate# TOC
	38.34 deflicker# TOC
	38.35 dejudder# TOC
	38.36 delogo# TOC
	38.36.1 Examples# TOC

	38.37 deshake# TOC
	38.38 despill# TOC
	38.39 detelecine# TOC
	38.40 dilation# TOC
	38.41 displace# TOC
	38.41.1 Examples# TOC

	38.42 drawbox# TOC
	38.42.1 Examples# TOC

	38.43 drawgrid# TOC
	38.43.1 Examples# TOC

	38.44 drawtext# TOC
	38.44.1 Syntax# TOC
	38.44.2 Text expansion# TOC
	38.44.3 Examples# TOC

	38.45 edgedetect# TOC
	38.45.1 Examples# TOC

	38.46 eq# TOC
	38.46.1 Commands# TOC

	38.47 erosion# TOC
	38.48 extractplanes# TOC
	38.48.1 Examples# TOC

	38.49 elbg# TOC
	38.50 fade# TOC
	38.50.1 Examples# TOC

	38.51 fftfilt# TOC
	38.51.1 Examples# TOC

	38.52 field# TOC
	38.53 fieldhint# TOC
	38.54 fieldmatch# TOC
	38.54.1 p/c/n/u/b meaning# TOC
	38.54.1.1 p/c/n# TOC
	38.54.1.2 u/b# TOC
	38.54.2 Examples# TOC

	38.55 fieldorder# TOC
	38.56 fifo, afifo# TOC
	38.57 fillborders# TOC
	38.58 find_rect# TOC
	38.58.1 Examples# TOC

	38.59 cover_rect# TOC
	38.59.1 Examples# TOC

	38.60 floodfill# TOC
	38.61 format# TOC
	38.61.1 Examples# TOC

	38.62 fps# TOC
	38.62.1 Examples# TOC

	38.63 framepack# TOC
	38.64 framerate# TOC
	38.65 framestep# TOC
	38.66 frei0r# TOC
	38.66.1 Examples# TOC

	38.67 fspp# TOC
	38.68 gblur# TOC
	38.69 geq# TOC
	38.69.1 Examples# TOC

	38.70 gradfun# TOC
	38.70.1 Examples# TOC

	38.71 haldclut# TOC
	38.71.1 Workflow examples# TOC
	38.71.1.1 Hald CLUT video stream# TOC
	38.71.1.2 Hald CLUT with preview# TOC

	38.72 hflip# TOC
	38.73 histeq# TOC
	38.74 histogram# TOC
	38.74.1 Examples# TOC

	38.75 hqdn3d# TOC
	38.76 hwdownload# TOC
	38.77 hwmap# TOC
	38.78 hwupload# TOC
	38.79 hwupload_cuda# TOC
	38.80 hqx# TOC
	38.81 hstack# TOC
	38.82 hue# TOC
	38.82.1 Examples# TOC
	38.82.2 Commands# TOC

	38.83 hysteresis# TOC
	38.84 idet# TOC
	38.85 il# TOC
	38.86 inflate# TOC
	38.87 interlace# TOC
	38.88 kerndeint# TOC
	38.88.1 Examples# TOC

	38.89 lenscorrection# TOC
	38.89.1 Options# TOC

	38.90 libvmaf# TOC
	38.91 limiter# TOC
	38.92 loop# TOC
	38.93 lut3d# TOC
	38.94 lumakey# TOC
	38.95 lut, lutrgb, lutyuv# TOC
	38.95.1 Examples# TOC

	38.96 lut2, tlut2# TOC
	38.96.1 Examples# TOC

	38.97 maskedclamp# TOC
	38.98 maskedmerge# TOC
	38.99 mcdeint# TOC
	38.100 mergeplanes# TOC
	38.100.1 Examples# TOC

	38.101 mestimate# TOC
	38.102 midequalizer# TOC
	38.103 minterpolate# TOC
	38.104 mix# TOC
	38.105 mpdecimate# TOC
	38.106 negate# TOC
	38.107 nlmeans# TOC
	38.108 nnedi# TOC
	38.109 noformat# TOC
	38.109.1 Examples# TOC

	38.110 noise# TOC
	38.110.1 Examples# TOC

	38.111 normalize# TOC
	38.111.1 Examples# TOC

	38.112 null# TOC
	38.113 ocr# TOC
	38.114 ocv# TOC
	38.114.1 dilate# TOC
	38.114.2 erode# TOC
	38.114.3 smooth# TOC

	38.115 oscilloscope# TOC
	38.115.1 Examples# TOC

	38.116 overlay# TOC
	38.116.1 Commands# TOC
	38.116.2 Examples# TOC

	38.117 owdenoise# TOC
	38.118 pad# TOC
	38.118.1 Examples# TOC

	38.119 palettegen# TOC
	38.119.1 Examples# TOC

	38.120 paletteuse# TOC
	38.120.1 Examples# TOC

	38.121 perspective# TOC
	38.122 phase# TOC
	38.123 pixdesctest# TOC
	38.124 pixscope# TOC
	38.125 pp# TOC
	38.125.1 Examples# TOC

	38.126 pp7# TOC
	38.127 premultiply# TOC
	38.128 prewitt# TOC
	38.129 pseudocolor# TOC
	38.129.1 Examples# TOC

	38.130 psnr# TOC
	38.131 pullup# TOC
	38.132 qp# TOC
	38.132.1 Examples# TOC

	38.133 random# TOC
	38.134 readeia608# TOC
	38.134.1 Examples# TOC

	38.135 readvitc# TOC
	38.135.1 Examples# TOC

	38.136 remap# TOC
	38.137 removegrain# TOC
	38.138 removelogo# TOC
	38.139 repeatfields# TOC
	38.140 reverse# TOC
	38.140.1 Examples# TOC

	38.141 roberts# TOC
	38.142 rotate# TOC
	38.142.1 Examples# TOC
	38.142.2 Commands# TOC

	38.143 sab# TOC
	38.144 scale# TOC
	38.144.1 Options# TOC
	38.144.2 Examples# TOC
	38.144.3 Commands# TOC

	38.145 scale_npp# TOC
	38.146 scale2ref# TOC
	38.146.1 Examples# TOC

	38.147 selectivecolor# TOC
	38.147.1 Examples# TOC

	38.148 separatefields# TOC
	38.149 setdar, setsar# TOC
	38.149.1 Examples# TOC

	38.150 setfield# TOC
	38.151 showinfo# TOC
	38.152 showpalette# TOC
	38.153 shuffleframes# TOC
	38.153.1 Examples# TOC

	38.154 shuffleplanes# TOC
	38.154.1 Examples# TOC

	38.155 signalstats# TOC
	38.155.1 Examples# TOC

	38.156 signature# TOC
	38.156.1 Examples# TOC

	38.157 smartblur# TOC
	38.158 ssim# TOC
	38.159 stereo3d# TOC
	38.159.1 Examples# TOC

	38.160 streamselect, astreamselect# TOC
	38.160.1 Commands# TOC
	38.160.2 Examples# TOC

	38.161 sobel# TOC
	38.162 spp# TOC
	38.163 subtitles# TOC
	38.164 super2xsai# TOC
	38.165 swaprect# TOC
	38.166 swapuv# TOC
	38.167 telecine# TOC
	38.168 threshold# TOC
	38.168.1 Examples# TOC

	38.169 thumbnail# TOC
	38.169.1 Examples# TOC

	38.170 tile# TOC
	38.170.1 Examples# TOC

	38.171 tinterlace# TOC
	38.172 tonemap# TOC
	38.172.1 Options# TOC

	38.173 transpose# TOC
	38.174 trim# TOC
	38.175 unpremultiply# TOC
	38.176 unsharp# TOC
	38.176.1 Examples# TOC

	38.177 uspp# TOC
	38.178 vaguedenoiser# TOC
	38.179 vectorscope# TOC
	38.180 vidstabdetect# TOC
	38.180.1 Examples# TOC

	38.181 vidstabtransform# TOC
	38.181.1 Options# TOC
	38.181.2 Examples# TOC

	38.182 vflip# TOC
	38.183 vignette# TOC
	38.183.1 Expressions# TOC
	38.183.2 Examples# TOC

	38.184 vmafmotion# TOC
	38.185 vstack# TOC
	38.186 w3fdif# TOC
	38.187 waveform# TOC
	38.188 weave, doubleweave# TOC
	38.188.1 Examples# TOC

	38.189 xbr# TOC
	38.190 yadif# TOC
	38.191 zoompan# TOC
	38.191.1 Examples# TOC

	38.192 zscale# TOC
	38.192.1 Options# TOC

	39 Video Sources# TOC
	39.1 buffer# TOC
	39.2 cellauto# TOC
	39.2.1 Examples# TOC

	39.3 coreimagesrc# TOC
	39.3.1 Examples# TOC

	39.4 mandelbrot# TOC
	39.5 mptestsrc# TOC
	39.6 frei0r_src# TOC
	39.7 life# TOC
	39.7.1 Examples# TOC

	39.8 allrgb, allyuv, color, haldclutsrc, nullsrc, rgbtestsrc, smptebars, smptehdbars, testsrc, testsrc2, yuvtestsrc# TOC
	39.8.1 Examples# TOC
	39.8.2 Commands# TOC

	40 Video Sinks# TOC
	40.1 buffersink# TOC
	40.2 nullsink# TOC

	41 Multimedia Filters# TOC
	41.1 abitscope# TOC
	41.2 ahistogram# TOC
	41.3 aphasemeter# TOC
	41.4 avectorscope# TOC
	41.4.1 Examples# TOC

	41.5 bench, abench# TOC
	41.5.1 Examples# TOC

	41.6 concat# TOC
	41.6.1 Examples# TOC

	41.7 drawgraph, adrawgraph# TOC
	41.8 ebur128# TOC
	41.8.1 Examples# TOC

	41.9 interleave, ainterleave# TOC
	41.9.1 Examples# TOC

	41.10 metadata, ametadata# TOC
	41.10.1 Examples# TOC

	41.11 perms, aperms# TOC
	41.12 realtime, arealtime# TOC
	41.13 select, aselect# TOC
	41.13.1 Examples# TOC

	41.14 sendcmd, asendcmd# TOC
	41.14.1 Commands syntax# TOC
	41.14.2 Examples# TOC

	41.15 setpts, asetpts# TOC
	41.15.1 Examples# TOC

	41.16 setrange# TOC
	41.17 settb, asettb# TOC
	41.17.1 Examples# TOC

	41.18 showcqt# TOC
	41.18.1 Examples# TOC

	41.19 showfreqs# TOC
	41.20 showspectrum# TOC
	41.20.1 Examples# TOC

	41.21 showspectrumpic# TOC
	41.21.1 Examples# TOC

	41.22 showvolume# TOC
	41.23 showwaves# TOC
	41.23.1 Examples# TOC

	41.24 showwavespic# TOC
	41.24.1 Examples# TOC

	41.25 sidedata, asidedata# TOC
	41.26 spectrumsynth# TOC
	41.26.1 Examples# TOC

	41.27 split, asplit# TOC
	41.27.1 Examples# TOC

	41.28 zmq, azmq# TOC
	41.28.1 Examples# TOC

	42 Multimedia Sources# TOC
	42.1 amovie# TOC
	42.2 movie# TOC
	42.2.1 Examples# TOC
	42.2.2 Commands# TOC

	43 See Also# TOC
	44 Authors# TOC

